Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Circ Res ; 134(4): 393-410, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38275112

RESUMO

BACKGROUND: The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS: Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS: (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3ß signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS: Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Complexo de Endopeptidases do Proteassoma , Camundongos , Ratos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Transgênicos , Peptídeos/metabolismo , Mamíferos
2.
Circ Res ; 132(7): 867-881, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36884028

RESUMO

BACKGROUND: Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, ß-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the ß-adrenergic receptor-desensitized postischemic myocardium. Nor is it fully understood whether and how TrkB agonists counter chronic postischemic left ventricle (LV) decompensation, a significant unmet clinical milestone. METHODS: We conducted in vitro studies using neonatal rat and adult murine cardiomyocytes, SH-SY5Y neuronal cells, and umbilical vein endothelial cells. We assessed myocardial ischemia (MI) impact in wild type, ß3AR knockout, or myocyte-selective BDNF knockout (myoBDNF KO) mice in vivo (via coronary ligation [MI]) or in isolated hearts with global ischemia-reperfusion (I/R). RESULTS: In wild type hearts, BDNF levels rose early after MI (<24 hours), plummeting at 4 weeks when LV dysfunction, adrenergic denervation, and impaired angiogenesis ensued. The TrkB agonist, LM22A-4, countered all these adverse effects. Compared with wild type, isolated myoBDNF KO hearts displayed worse infarct size/LV dysfunction after I/R injury and modest benefits from LM22A-4. In vitro, LM22A-4 promoted neurite outgrowth and neovascularization, boosting myocyte function, effects reproduced by 7,8-dihydroxyflavone, a chemically unrelated TrkB agonist. Superfusing myocytes with the ß3AR-agonist, BRL-37344, increased myocyte BDNF content, while ß3AR signaling underscored BDNF generation/protection in post-MI hearts. Accordingly, the ß1AR blocker, metoprolol, via upregulated ß3ARs, improved chronic post-MI LV dysfunction, enriching the myocardium with BDNF. Last, BRL-37344-imparted benefits were nearly abolished in isolated I/R injured myoBDNF KO hearts. CONCLUSIONS: BDNF loss underscores chronic postischemic heart failure. TrkB agonists can improve ischemic LV dysfunction via replenished myocardial BDNF content. Direct cardiac ß3AR stimulation, or ß-blockers (via upregulated ß3AR), is another BDNF-based means to fend off chronic postischemic heart failure.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Neuroblastoma , Disfunção Ventricular Esquerda , Ratos , Camundongos , Humanos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Endoteliais/metabolismo , Neuroblastoma/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Receptores Adrenérgicos beta/metabolismo
3.
Circulation ; 147(15): 1162-1179, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36883479

RESUMO

BACKGROUND: Myocardial insulin resistance is a hallmark of diabetic cardiac injury. However, the underlying molecular mechanisms remain unclear. Recent studies demonstrate that the diabetic heart is resistant to other cardioprotective interventions, including adiponectin and preconditioning. The "universal" resistance to multiple therapeutic interventions suggests impairment of the requisite molecule(s) involved in broad prosurvival signaling cascades. Cav (Caveolin) is a scaffolding protein coordinating transmembrane signaling transduction. However, the role of Cav3 in diabetic impairment of cardiac protective signaling and diabetic ischemic heart failure is unknown. METHODS: Wild-type and gene-manipulated mice were fed a normal diet or high-fat diet for 2 to 12 weeks and subjected to myocardial ischemia and reperfusion. Insulin cardioprotection was determined. RESULTS: Compared with the normal diet group, the cardioprotective effect of insulin was significantly blunted as early as 4 weeks of high-fat diet feeding (prediabetes), a time point where expression levels of insulin-signaling molecules remained unchanged. However, Cav3/insulin receptor-ß complex formation was significantly reduced. Among multiple posttranslational modifications altering protein/protein interaction, Cav3 (not insulin receptor-ß) tyrosine nitration is prominent in the prediabetic heart. Treatment of cardiomyocytes with 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride reduced the signalsome complex and blocked insulin transmembrane signaling. Mass spectrometry identified Tyr73 as the Cav3 nitration site. Phenylalanine substitution of Tyr73 (Cav3Y73F) abolished 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride-induced Cav3 nitration, restored Cav3/insulin receptor-ß complex, and rescued insulin transmembrane signaling. It is most important that adeno-associated virus 9-mediated cardiomyocyte-specific Cav3Y73F reexpression blocked high-fat diet-induced Cav3 nitration, preserved Cav3 signalsome integrity, restored transmembrane signaling, and rescued insulin-protective action against ischemic heart failure. Last, diabetic nitrative modification of Cav3 at Tyr73 also reduced Cav3/AdipoR1 complex formation and blocked adiponectin cardioprotective signaling. CONCLUSIONS: Nitration of Cav3 at Tyr73 and resultant signal complex dissociation results in cardiac insulin/adiponectin resistance in the prediabetic heart, contributing to ischemic heart failure progression. Early interventions preserving Cav3-centered signalsome integrity is an effective novel strategy against diabetic exacerbation of ischemic heart failure.


Assuntos
Insuficiência Cardíaca , Resistência à Insulina , Traumatismo por Reperfusão Miocárdica , Estado Pré-Diabético , Camundongos , Animais , Caveolina 3/genética , Caveolina 3/metabolismo , Adiponectina/metabolismo , Adiponectina/farmacologia , Cloretos/metabolismo , Cloretos/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo
4.
Circ Res ; 131(2): e34-e50, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611695

RESUMO

BACKGROUND: Despite significantly reduced acute myocardial infarction (MI) mortality in recent years, ischemic heart failure continues to escalate. Therapeutic interventions effectively reversing pathological remodeling are an urgent unmet medical need. We recently demonstrated that AdipoR1 (APN [adiponectin] receptor 1) phosphorylation by GRK2 (G-protein-coupled receptor kinase 2) contributes to maladaptive remodeling in the ischemic heart. The current study clarified the underlying mechanisms leading to AdipoR1 phosphorylative desensitization and investigated whether blocking AdipoR1 phosphorylation may restore its protective signaling, reversing post-MI remodeling. METHODS: Specific sites and underlying molecular mechanisms responsible for AdipoR1 phosphorylative desensitization were investigated in vitro (neonatal and adult cardiomyocytes). The effects of AdipoR1 phosphorylation inhibition upon APN post-MI remodeling and heart failure progression were investigated in vivo. RESULTS: Among 4 previously identified sites sensitive to GRK2 phosphorylation, alanine substitution of Ser205 (AdipoR1S205A), but not other 3 sites, rescued GRK2-suppressed AdipoR1 functions, restoring APN-induced cell salvage kinase activation and reducing oxidative cell death. The molecular investigation followed by functional determination demonstrated that AdipoR1 phosphorylation promoted clathrin-dependent (not caveolae) endocytosis and lysosomal-mediated (not proteasome) degradation, reducing AdipoR1 protein level and suppressing AdipoR1-mediated cytoprotective action. GRK2-induced AdipoR1 endocytosis and degradation were blocked by AdipoR1S205A overexpression. Moreover, AdipoR1S205E (pseudophosphorylation) phenocopied GRK2 effects, promoted AdipoR1 endocytosis and degradation, and inhibited AdipoR1 biological function. Most importantly, AdipoR1 function was preserved during heart failure development in AdipoR1-KO (AdipoR1 knockout) mice reexpressing hAdipoR1S205A. APN administration in the failing heart reversed post-MI remodeling and improved cardiac function. However, reexpressing hAdipoR1WT in AdipoR1-KO mice failed to restore APN cardioprotection. CONCLUSIONS: Ser205 is responsible for AdipoR1 phosphorylative desensitization in the failing heart. Blockade of AdipoR1 phosphorylation followed by pharmacological APN administration is a novel therapy effective in reversing post-MI remodeling and mitigating heart failure progression.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Adiponectina/metabolismo , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Isquemia/metabolismo , Camundongos , Camundongos Knockout , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo
5.
Circ Res ; 130(1): 48-66, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34763521

RESUMO

BACKGROUND: Patients with acute myocardial infarction suffer systemic metabolic dysfunction via incompletely understood mechanisms. Adipocytes play critical role in metabolic homeostasis. The impact of acute myocardial infarction upon adipocyte function is unclear. Small extracellular vesicles (sEVs) critically contribute to organ-organ communication. Whether and how small extracellular vesicle mediate post-MI cardiomyocyte/adipocyte communication remain unknown. METHODS: Plasma sEVs were isolated from sham control (Pla-sEVSham) or 3 hours after myocardial ischemia/reperfusion (Pla-sEVMI/R) and incubated with adipocytes for 24 hours. Compared with Pla-sEVSham, Pla-sEVMI/R significantly altered expression of genes known to be important in adipocyte function, including a well-known metabolic regulatory/cardioprotective adipokine, APN (adiponectin). Pla-sEVMI/R activated 2 (PERK-CHOP and ATF6 [transcription factor 6]-EDEM [ER degradation enhancing alpha-mannosidase like protein 1] pathways) of the 3 endoplasmic reticulum (ER) stress pathways in adipocytes. These pathological alterations were also observed in adipocytes treated with sEVs isolated from adult cardiomyocytes subjected to in vivo myocardial ischemia/reperfusion (MI/R) (Myo-sEVMI/R). Bioinformatic/RT-qPCR analysis demonstrates that the members of miR-23-27-24 cluster are significantly increased in Pla-sEVMI/R, Myo-sEVMI/R, and adipose tissue of MI/R animals. Administration of cardiomyocyte-specific miR-23-27-24 sponges abolished adipocyte miR-23-27-24 elevation in MI/R animals, supporting the cardiomyocyte origin of adipocyte miR-23-27-24 cluster. In similar fashion to Myo-sEVMI/R, a miR-27a mimic activated PERK-CHOP and ATF6-EDEM-mediated ER stress. Conversely, a miR-27a inhibitor significantly attenuated Myo-sEVMI/R-induced ER stress and restored APN production. RESULTS: An unbiased approach identified EDEM3 (ER degradation enhancing alpha-mannosidase like protein 3) as a novel downstream target of miR-27a. Adipocyte EDEM3 deficiency phenocopied multiple pathological alterations caused by Myo-sEVMI/R, whereas EDEM3 overexpression attenuated Myo-sEVMI/R-resulted ER stress. Finally, administration of GW4869 or cardiomyocyte-specific miR-23-27-24 cluster sponges attenuated adipocyte ER stress, improved adipocyte endocrine function, and restored plasma APN levels in MI/R animals. CONCLUSIONS: We demonstrate for the first time that MI/R causes significant adipocyte ER stress and endocrine dysfunction by releasing miR-23-27-24 cluster-enriched small extracellular vesicle. Targeting small extracellular vesicle-mediated cardiomyocyte-adipocyte pathological communication may be of therapeutic potential to prevent metabolic dysfunction after MI/R.


Assuntos
Adipócitos/metabolismo , Comunicação Celular , Estresse do Retículo Endoplasmático , Vesículas Extracelulares/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Adiponectina/metabolismo , Animais , Masculino , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/metabolismo , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 43(12): e491-e508, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795615

RESUMO

BACKGROUND: APN (adiponectin) and APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) are potent vasculoprotective molecules, and their deficiency (eg, hypoadiponectinemia) contributes to diabetic vascular complications. However, the molecular mechanisms that govern their vasculoprotective genes as well as their alteration by diabetes remain unknown. METHODS: Diabetic medium-cultured rat aortic endothelial cells, mouse aortic endothelial cells from high-fat-diet animals, and diabetic human aortic endothelial cells were used for molecular/cellular investigations. The in vivo concept-prove demonstration was conducted using diabetic vascular injury and diabetic hindlimb ischemia models. RESULTS: In vivo animal experiments showed that APN replenishment caused APPL1 nuclear translocation, resulting in an interaction with HDAC (histone deacetylase) 2, which inhibited HDAC2 activity and increased H3Kac27 levels. Based on transcriptionome pathway-specific real-time polymerase chain reaction profiling and bioinformatics analysis, Angpt1 (angiopoietin 1), Ocln (occludin), and Cav1 (caveolin 1) were found to be the top 3 vasculoprotective genes suppressed by diabetes and rescued by APN in an APPL1-dependent manner. APN reverses diabetes-induced inhibition of Cav1 interaction with APPL1. APN-induced Cav1 expression was not affected by Angpt1 or Ocln deficiency, whereas APN-induced APPL1 nuclear translocation or upregulation of Angpt1/Ocln expression was abolished in the absence of Cav1 both in vivo and in vitro, suggesting Cav1 is upstream molecule of Angpt1/Ocln in response to APN administration. Chromatin immunoprecipitation-qPCR (quantitative polymerase chain reaction) demonstrated that APN caused significant enrichment of H3K27ac in Angpt1 and Ocln promoter region, an effect blocked by APPL1/Cav1 knockdown or HDAC2 overexpression. The protective effects of APN on the vascular system were attenuated by overexpression of HDAC2 and abolished by knocking out APPL1 or Cav1. The double knockdown of ANGPT1/OCLN blunted APN vascular protection both in vitro and in vivo. Furthermore, in diabetic human endothelial cells, HDAC2 activity is increased, H3 acetylation is decreased, and ANGPT1/OCLN expression is reduced, suggesting that the findings have important translational implications. CONCLUSIONS: Hypoadiponectinemia and dysregulation of APPL1-mediated epigenetic regulation are novel mechanisms leading to diabetes-induced suppression of vasculoprotective gene expression. Diabetes-induced pathological vascular remodeling may be prevented by interventions promoting APPL1 nuclear translocation and inhibiting HDAC2.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Lesões do Sistema Vascular , Animais , Humanos , Camundongos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adiponectina/metabolismo , Diabetes Mellitus/genética , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/prevenção & controle , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Lesões do Sistema Vascular/genética
7.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33500351

RESUMO

Pathological remodeling of the heart is a hallmark of chronic heart failure (HF) and these structural changes further perpetuate the disease. Cardiac fibroblasts are the critical cell type that is responsible for maintaining the structural integrity of the heart. Stress conditions, such as a myocardial infarction (MI), can activate quiescent fibroblasts into synthetic and contractile myofibroblasts. G protein-coupled receptor kinase 5 (GRK5) is an important mediator of cardiovascular homeostasis through dampening of GPCR signaling, and is expressed in the heart and up-regulated in human HF. Of note, GRK5 has been demonstrated to translocate to the nucleus in cardiomyocytes in a calcium-calmodulin (Ca2+-CAM)-dependent manner, promoting hypertrophic gene transcription through activation of nuclear factor of activated T cells (NFAT). Interestingly, NFAT is also involved in fibroblast activation. GRK5 is highly expressed and active in cardiac fibroblasts; however, its pathophysiological role in these crucial cardiac cells is unknown. We demonstrate using adult cardiac fibroblasts that genetic deletion of GRK5 inhibits angiotensin II (AngII)-mediated fibroblast activation. Fibroblast-specific deletion of GRK5 in mice led to decreased fibrosis and cardiac hypertrophy after chronic AngII infusion or after ischemic injury compared to nontransgenic littermate controls (NLCs). Mechanistically, we show that nuclear translocation of GRK5 is involved in fibroblast activation. These data demonstrate that GRK5 is a regulator of fibroblast activation in vitro and cardiac fibrosis in vivo. This adds to previously published data which demonstrate the potential beneficial effects of GRK5 inhibition in the context of cardiac disease.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Miocárdio/patologia , Angiotensina II , Animais , Animais Recém-Nascidos , Cardiomegalia/complicações , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Transdiferenciação Celular , Fibrose , Camundongos Knockout , Modelos Biológicos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miofibroblastos/patologia , Ratos
8.
J Mol Cell Cardiol ; 182: 1-14, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437402

RESUMO

Diabetes enhances myocardial ischemic/reperfusion (MI/R) injury via an incompletely understood mechanism. Adiponectin (APN) is a cardioprotective adipokine suppressed by diabetes. However, how hypoadiponectinemia exacerbates cardiac injury remains incompletely understood. Dysregulation of miRNAs plays a significant role in disease development. However, whether hypoadiponectinemia alters cardiac miRNA profile, contributing to diabetic heart injury, remains unclear. Methods and Results: Wild-type (WT) and APN knockout (APN-KO) mice were subjected to MI/R. A cardiac microRNA profile was determined. Among 23 miRNAs increased in APN-KO mice following MI/R, miR-449b was most significantly upregulated (3.98-fold over WT mice). Administrating miR-449b mimic increased apoptosis, enlarged infarct size, and impaired cardiac function in WT mice. In contrast, anti-miR-449b decreased apoptosis, reduced infarct size, and improved cardiac function in APN-KO mice. Bioinformatic analysis predicted 73 miR-449b targeting genes, and GO analysis revealed oxidative stress as the top pathway regulated by these genes. Venn analysis followed by luciferase assay identified Nrf-1 and Ucp3 as the two most important miR-449b targets. In vivo administration of anti-miR-449b in APN-KO mice attenuated MI/R-stimulated superoxide overproduction. In vitro experiments demonstrated that high glucose/high lipid and simulated ischemia/reperfusion upregulated miR-449b and inhibited Nrf-1 and Ucp3 expression. These pathological effects were attenuated by anti-miR-449b or Nrf-1 overexpression. In a final attempt to validate our finding in a clinically relevant model, high-fat diet (HFD)-induced diabetic mice were subjected to MI/R and treated with anti-miR-449b or APN. Diabetes significantly increased miR-449b expression and downregulated Nrf-1 and Ucp3 expression. Administration of anti-miR-449b or APN preserved cardiac Nrf-1 expression, reduced cardiac oxidative stress, decreased apoptosis and infarct size, and improved cardiac function. Conclusion: We demonstrated for the first time that hypoadiponectinemia upregulates miR-449b and suppresses Nrf-1/Ucp3 expression, promoting oxidative stress and exacerbating MI/R injury in this population. Dysregulated APN/miR-449b/oxidative stress pathway is a potential therapeutic target against diabetic MI/R injury.


Assuntos
Diabetes Mellitus Experimental , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Adiponectina/genética , Adiponectina/metabolismo , Adiponectina/farmacologia , Antagomirs , Apoptose/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Infarto/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima/genética
9.
Clin Sci (Lond) ; 137(19): 1513-1531, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37728308

RESUMO

Myeloid cells, including macrophages, play important roles as first responders to cardiac injury and stress. Epidermal growth factor receptor (EGFR) has been identified as a mediator of macrophage responsiveness to select diseases, though its impact on cardiac function or remodeling following acute ischemic injury is unknown. We aimed to define the role of myeloid cell-specific EGFR in the regulation of cardiac function and remodeling following acute myocardial infarction (MI)-induced injury. Floxed EGFR mice were bred with homozygous LysM-Cre (LMC) transgenic mice to yield myeloid-specific EGFR knockout (mKO) mice. Via echocardiography, immunohistochemistry, RNA sequencing and flow cytometry, the impact of myeloid cell-specific EGFR deletion on cardiac structure and function was assessed at baseline and following injury. Compared with LMC controls, myeloid cell-specific EGFR deletion led to an increase in cardiomyocyte hypertrophy at baseline. Bulk RNASeq analysis of isolated cardiac Cd11b+ myeloid cells revealed substantial changes in mKO cell transcripts at baseline, particularly in relation to predicted decreases in neovascularization. In response to myocardial infarction, mKO mice experienced a hastened decline in cardiac function with isolated cardiac Cd11b+ myeloid cells expressing decreased levels of the pro-reparative mediators Vegfa and Il10, which coincided with enhanced cardiac hypertrophy and decreased capillary density. Overall, loss of EGFR qualitatively alters cardiac resident macrophages that promotes a low level of basal stress and a more rapid decrease in cardiac function along with worsened repair following acute ischemic injury.


Assuntos
Receptores ErbB , Infarto do Miocárdio , Camundongos , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Mieloides/metabolismo , Macrófagos/metabolismo , Coração , Infarto do Miocárdio/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Remodelação Ventricular/genética
11.
Nature ; 545(7652): 93-97, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445457

RESUMO

Mitochondrial calcium (mCa2+) has a central role in both metabolic regulation and cell death signalling, however its role in homeostatic function and disease is controversial. Slc8b1 encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), which is proposed to be the primary mechanism for mCa2+ extrusion in excitable cells. Here we show that tamoxifen-induced deletion of Slc8b1 in adult mouse hearts causes sudden death, with less than 13% of affected mice surviving after 14 days. Lethality correlated with severe myocardial dysfunction and fulminant heart failure. Mechanistically, cardiac pathology was attributed to mCa2+ overload driving increased generation of superoxide and necrotic cell death, which was rescued by genetic inhibition of mitochondrial permeability transition pore activation. Corroborating these findings, overexpression of NCLX in the mouse heart by conditional transgenesis had the beneficial effect of augmenting mCa2+ clearance, preventing permeability transition and protecting against ischaemia-induced cardiomyocyte necrosis and heart failure. These results demonstrate the essential nature of mCa2+ efflux in cellular function and suggest that augmenting mCa2+ efflux may be a viable therapeutic strategy in disease.


Assuntos
Cálcio/metabolismo , Homeostase , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Sobrevivência Celular , Morte Súbita , Feminino , Deleção de Genes , Células HeLa , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Trocador de Sódio e Cálcio/genética , Superóxidos/metabolismo , Tamoxifeno/farmacologia , Remodelação Ventricular
12.
Sheng Li Xue Bao ; 75(1): 36-48, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36859833

RESUMO

Myocardial infarction (MI) is one of the leading causes of death in the world. With the improvement of clinical therapy, the mortality of acute MI has been significantly reduced. However, as for the long-term impact of MI on cardiac remodeling and cardiac function, there is no effective prevention and treatment measures. Erythropoietin (EPO), a glycoprotein cytokine essential to hematopoiesis, has anti-apoptotic and pro-angiogenetic effects. Studies have shown that EPO plays a protective role in cardiomyocytes in cardiovascular diseases, such as cardiac ischemia injury and heart failure. EPO has been demonstrated to protect ischemic myocardium and improve MI repair by promoting the activation of cardiac progenitor cells (CPCs). This study aimed to investigate whether EPO can promote MI repair by enhancing the activity of stem cell antigen 1 positive stem cells (Sca-1+ SCs). Darbepoetin alpha (a long-acting EPO analog, EPOanlg) was injected into the border zone of MI in adult mice. Infarct size, cardiac remodeling and performance, cardiomyocyte apoptosis and microvessel density were measured. Lin- Sca-1+ SCs were isolated from neonatal and adult mouse hearts by magnetic sorting technology, and were used to identify the colony forming ability and the effect of EPO, respectively. The results showed that, compared to MI alone, EPOanlg reduced the infarct percentage, cardiomyocyte apoptosis ratio and left ventricular (LV) chamber dilatation, improved cardiac performance, and increased the numbers of coronary microvessels in vivo. In vitro, EPO increased the proliferation, migration and clone formation of Lin- Sca-1+ SCs likely via the EPO receptor and downstream STAT-5/p38 MAPK signaling pathways. These results suggest that EPO participates in the repair process of MI by activating Sca-1+ SCs.


Assuntos
Eritropoetina , Infarto do Miocárdio , Animais , Camundongos , Remodelação Ventricular , Coração , Células-Tronco
13.
Circulation ; 143(11): 1139-1156, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33430631

RESUMO

BACKGROUND: We previously showed that cardiomyocyte Krϋppel-like factor (KLF) 5 regulates cardiac fatty acid oxidation. As heart failure has been associated with altered fatty acid oxidation, we investigated the role of cardiomyocyte KLF5 in lipid metabolism and pathophysiology of ischemic heart failure. METHODS: Using real-time polymerase chain reaction and Western blot, we investigated the KLF5 expression changes in a myocardial infarction (MI) mouse model and heart tissue from patients with ischemic heart failure. Using 2D echocardiography, we evaluated the effect of KLF5 inhibition after MI using pharmacological KLF5 inhibitor ML264 and mice with cardiomyocyte-specific KLF5 deletion (αMHC [α-myosin heavy chain]-KLF5-/-). We identified the involvement of KLF5 in regulating lipid metabolism and ceramide accumulation after MI using liquid chromatography-tandem mass spectrometry, and Western blot and real-time polymerase chain reaction analysis of ceramide metabolism-related genes. We lastly evaluated the effect of cardiomyocyte-specific KLF5 overexpression (αMHC-rtTA [reverse tetracycline-controlled transactivator]-KLF5) on cardiac function and ceramide metabolism, and rescued the phenotype using myriocin to inhibit ceramide biosynthesis. RESULTS: KLF5 mRNA and protein levels were higher in human ischemic heart failure samples and in rodent models at 24 hours, 2 weeks, and 4 weeks post-permanent left coronary artery ligation. αMHC-KLF5-/- mice and mice treated with ML264 had higher ejection fraction and lower ventricular volume and heart weight after MI. Lipidomic analysis showed that αMHC-KLF5-/- mice with MI had lower myocardial ceramide levels compared with littermate control mice with MI, although basal ceramide content of αMHC-KLF5-/- mice was not different in control mice. KLF5 ablation suppressed the expression of SPTLC1 and SPTLC2 (serine palmitoyltransferase [SPT] long-chain base subunit ()1 2, respectively), which regulate de novo ceramide biosynthesis. We confirmed our previous findings that myocardial SPTLC1 and SPTLC2 levels are increased in heart failure patients. Consistently, αMHC-rtTA-KLF5 mice showed increased SPTLC1 and SPTLC2 expression, higher myocardial ceramide levels, and systolic dysfunction beginning 2 weeks after KLF5 induction. Treatment of αMHC-rtTA-KLF5 mice with myriocin that inhibits SPT, suppressed myocardial ceramide levels and alleviated systolic dysfunction. CONCLUSIONS: KLF5 is induced during the development of ischemic heart failure in humans and mice and stimulates ceramide biosynthesis. Genetic or pharmacological inhibition of KLF5 in mice with MI prevents ceramide accumulation, alleviates eccentric remodeling, and increases ejection fraction. Thus, KLF5 emerges as a novel therapeutic target for the treatment of ischemic heart failure.


Assuntos
Cardiomiopatias/fisiopatologia , Ceramidas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
14.
Am J Physiol Heart Circ Physiol ; 323(6): H1244-H1261, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240436

RESUMO

Extracellular purine nucleotides and nucleosides released from activated or injured cells influence multiple aspects of cardiac physiology and pathophysiology. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1; CD39) hydrolyzes released nucleotides and thereby regulates the magnitude and duration of purinergic signaling. However, the impact of CD39 activity on post-myocardial infarction (MI) remodeling is incompletely understood. We measured the levels and activity of ectonucleotidases in human left ventricular samples from control and ischemic cardiomyopathy (ICM) hearts and examined the impact of ablation of Cd39 expression on post-myocardial infarction remodeling in mice. We found that human CD39 levels and activity are significantly decreased in ICM hearts (n = 5) compared with control hearts (n = 5). In mice null for Cd39, cardiac function and remodeling are significantly compromised in Cd39-/- mice following myocardial infarction. Fibrotic markers including plasminogen activator inhibitor-1 (PAI-1) expression, fibrin deposition, α-smooth muscle actin (αSMA), and collagen expression are increased in Cd39-/- hearts. Importantly, we found that transforming growth factor ß1 (TGF-ß1) stimulates ATP release and induces Cd39 expression and activity on cardiac fibroblasts, constituting an autocrine regulatory pathway not previously appreciated. Absence of CD39 activity on cardiac fibroblasts exacerbates TGF-ß1 profibrotic responses. Treatment with exogenous ectonucleotidase rescues this profibrotic response in Cd39-/- fibroblasts. Together, these data demonstrate that CD39 has important interactions with TGF-ß1-stimulated autocrine purinergic signaling in cardiac fibroblasts and dictates outcomes of cardiac remodeling following myocardial infarction. Our results reveal that ENTPD1 (CD39) regulates TGF-ß1-mediated fibroblast activation and limits adverse cardiac remodeling following myocardial infarction.NEW & NOTEWORTHY We show that CD39 is a critical modulator of TGF-ß1-mediated fibroblast activation and cardiac remodeling following myocardial infarction via modulation of nucleotide signaling. TGF-ß1-induced CD39 expression generates a negative feedback loop that attenuates cardiac fibroblast activation. In the absence of CD39 activity, collagen deposition is increased, elastin expression is decreased, and diastolic dysfunction is worsened. Treatment with ecto-apyrase attenuates the TGF-ß1-induced profibrotic cardiac fibroblast phenotype, revealing a novel approach to combat post-myocardial infarction cardiac fibrosis.


Assuntos
Infarto do Miocárdio , Fator de Crescimento Transformador beta1 , Humanos , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Ventricular , Miocárdio/metabolismo , Fibrose , Fibroblastos/metabolismo , Colágeno/metabolismo
15.
Circ Res ; 126(7): 857-874, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32079489

RESUMO

RATIONALE: Mesenchymal stromal cell-based therapy is promising against ischemic heart failure. However, its efficacy is limited due to low cell retention and poor paracrine function. A transmembrane protein capable of enhancing cell-cell adhesion, N-cadherin garnered attention in the field of stem cell biology only recently. OBJECTIVE: The current study investigates whether and how N-cadherin may regulate mesenchymal stromal cells retention and cardioprotective capability against ischemic heart failure. METHODS AND RESULTS: Adult mice-derived adipose tissue-derived mesenchymal stromal cells (ADSC) were transfected with adenovirus harboring N-cadherin, T-cadherin, or control adenovirus. CM-DiI-labeled ADSC were intramyocardially injected into the infarct border zone at 3 sites immediately after myocardial infarction (MI) or myocardial ischemia/reperfusion. ADSC retention/survival, cardiomyocyte apoptosis/proliferation, capillary density, cardiac fibrosis, and cardiac function were determined. Discovery-driven/cause-effect analysis was used to determine the molecular mechanisms. Compared with ADSC transfected with adenovirus-control, N-cadherin overexpression (but not T-cadherin) markedly increased engrafted ADSC survival/retention up to 7 days post-MI. Histological analysis revealed that ADSC transfected with adenovirus-N-cadherin significantly preserved capillary density and increased cardiomyocyte proliferation and moderately reduced cardiomyocyte apoptosis 3 days post-MI. More importantly, ADSC transfected with adenovirus-N-cadherin (but not ADSC transfected with adenovirus-T-cadherin) significantly increased left ventricular ejection fraction and reduced fibrosis in both MI and myocardial ischemia/reperfusion mice. In vitro experiments demonstrated that N-cadherin overexpression promoted ADSC-cardiomyocyte adhesion and ADSC migration, enhancing their capability to increase angiogenesis and cardiomyocyte proliferation. MMP (matrix metallopeptidases)-10/13 and HGF (hepatocyte growth factor) upregulation is responsible for N-cadherin's effect upon ADSC migration and paracrine angiogenesis. N-cadherin overexpression promotes cardiomyocyte proliferation by HGF release. Mechanistically, N-cadherin overexpression significantly increased N-cadherin/ß-catenin complex formation and active ß-catenin levels in the nucleus. ß-catenin knockdown abolished N-cadherin overexpression-induced MMP-10, MMP-13, and HGF expression and blocked the cellular actions and cardioprotective effects of ADSC overexpressing N-cadherin. CONCLUSIONS: We demonstrate for the first time that N-cadherin overexpression enhances mesenchymal stromal cells-protective effects against ischemic heart failure via ß-catenin-mediated MMP-10/MMP-13/HGF expression and production, promoting ADSC/cardiomyocyte adhesion and ADSC retention.


Assuntos
Tecido Adiposo/citologia , Caderinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Caderinas/genética , Adesão Celular , Proliferação de Células , Células Cultivadas , Fator de Crescimento de Hepatócito/metabolismo , Metaloproteinase 10 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Traumatismo por Reperfusão Miocárdica/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
16.
J Mol Cell Cardiol ; 154: 137-153, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548241

RESUMO

G protein-coupled receptor (GPCR) kinase 2 (GRK2) expression and activity are elevated early on in response to several forms of cardiovascular stress and are a hallmark of heart failure. Interestingly, though, in addition to its well-characterized role in regulating GPCRs, mounting evidence suggests a GRK2 "interactome" that underlies a great diversity in its functional roles. Several such GRK2 interacting partners are important for adaptive and maladaptive myocyte growth; therefore, an understanding of domain-specific interactions with signaling and regulatory molecules could lead to novel targets for heart failure therapy. Herein, we subjected transgenic mice with cardiac restricted expression of a short, amino terminal fragment of GRK2 (ßARKnt) to pressure overload and found that unlike their littermate controls or previous GRK2 fragments, they exhibited an increased left ventricular wall thickness and mass prior to cardiac stress that underwent proportional hypertrophic growth to controls after acute pressure overload. Importantly, despite this enlarged heart, ßARKnt mice did not undergo the expected transition to heart failure observed in controls. Further, ßARKnt expression limited adverse left ventricular remodeling and increased cell survival signaling. Proteomic analysis to identify ßARKnt binding partners that may underlie the improved cardiovascular phenotype uncovered a selective functional interaction of both endogenous GRK2 and ßARKnt with AKT substrate of 160 kDa (AS160). AS160 has emerged as a key downstream regulator of insulin signaling, integrating physiological and metabolic cues to couple energy demand to membrane recruitment of Glut4. Our preliminary data indicate that in ßARKnt mice, cardiomyocyte insulin signaling is improved during stress, with a coordinate increase in spare respiratory activity and ATP production without metabolite switching. Surprisingly, these studies also revealed a significant decrease in gonadal fat weight, equivalent to human abdominal fat, in male ßARKnt mice at baseline and following cardiac stress. These data suggest that the enhanced AS160-mediated signaling in the ßARKnt mice may ameliorate pathological cardiac remodeling through direct modulation of insulin signaling within cardiomyocytes, and translate these to beneficial effects on systemic metabolism.


Assuntos
Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Quinase 2 de Receptor Acoplado a Proteína G/química , Peptídeos/genética , Domínios e Motivos de Interação entre Proteínas , Animais , Biomarcadores , Cardiomegalia/diagnóstico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Expressão Gênica , Camundongos , Camundongos Transgênicos , Peptídeos/metabolismo , Fenótipo , Ligação Proteica , Transdução de Sinais , Remodelação Ventricular
17.
J Mol Cell Cardiol ; 160: 27-41, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34224725

RESUMO

Irisin, the cleaved form of the fibronectin type III domain containing 5 (FNDC5) protein, is involved in metabolism and inflammation. Recent findings indicated that irisin participated in cardiovascular physiology and pathology. In this study, we investigated the effects of FNDC5/irisin on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. Downregulation of myocardial FNDC5/irisin protein expression and plasma irisin levels was observed in db/db mice compared to db/+ controls. Moreover, echocardiography revealed that db/db mice exhibited normal cardiac systolic function and impaired diastolic function. Adverse structural remodeling, including cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy were observed in the hearts of db/db mice. Sixteen-week-old db/db mice were intramyocardially injected with adenovirus encoding FNDC5 or treated with recombinant human irisin via a peritoneal implant osmotic pump for 4 weeks. Both overexpression of myocardial FNDC5 and exogenous irisin administration attenuated diastolic dysfunction and cardiac structural remodeling in db/db mice. Results from in vitro studies revealed that FNDC5/irisin protein expression was decreased in high glucose (HG)/high fat (HF)-treated cardiomyocytes. Increased levels of inducible nitric oxide synthase (iNOS), NADPH oxidase 2 (NOX2), 3-nitrotyrosine (3-NT), reactive oxygen species (ROS), and peroxynitrite (ONOO-) in HG/HF-treated H9C2 cells provided evidence of oxidative/nitrosative stress, which was alleviated by treatment with FNDC5/irisin. Moreover, the mitochondria membrane potential (ΔΨm) was decreased and cytochrome C was released from mitochondria with increased levels of cleaved caspase-3 in HG/HF-treated H9C2 cells, indicating the presence of mitochondria-dependent apoptosis, which was partially reversed by FNDC5/irisin treatment. Mechanistic studies showed that activation of integrin αVß5-AKT signaling and attenuation of oxidative/nitrosative stress were responsible for the cardioprotective effects of FNDC5/irisin. Therefore, FNDC5/irisin mediates cardioprotection in DCM by inhibiting myocardial apoptosis, myocardial fibrosis, and cardiac hypertrophy. These findings implicate that FNDC5/irisin as a potential therapeutic intervention for DCM, especially in type 2 diabetes mellitus (T2DM).


Assuntos
Cardiotônicos/administração & dosagem , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/tratamento farmacológico , Fibronectinas/administração & dosagem , Estresse Nitrosativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Vitronectina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cardiomegalia/prevenção & controle , Cardiotônicos/sangue , Modelos Animais de Doenças , Fibronectinas/sangue , Fibronectinas/genética , Masculino , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Recombinantes/administração & dosagem , Resultado do Tratamento , Remodelação Ventricular/efeitos dos fármacos
18.
Circulation ; 142(9): 882-898, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640834

RESUMO

BACKGROUND: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS: To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.


Assuntos
Cardiomegalia/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Proteína Forkhead Box O1/metabolismo , Uridina Quinase/metabolismo , Animais , Cardiomegalia/genética , Proteínas Relacionadas à Folistatina/genética , Proteína Forkhead Box O1/genética , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Uridina Quinase/genética
19.
Circulation ; 141(12): 968-983, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-31918577

RESUMO

BACKGROUND: Diabetes mellitus exacerbates myocardial ischemia/reperfusion (MI/R) injury by incompletely understood mechanisms. Adipocyte dysfunction contributes to remote organ injury. However, the molecular mechanisms linking dysfunctional adipocytes to increased MI/R injury remain unidentified. The current study attempted to clarify whether and how small extracellular vesicles (sEV) may mediate pathological communication between diabetic adipocytes and cardiomyocytes, exacerbating MI/R injury. METHODS: Adult male mice were fed a normal or a high-fat diet for 12 weeks. sEV (from diabetic serum, diabetic adipocytes, or high glucose/high lipid-challenged nondiabetic adipocytes) were injected intramyocardially distal of coronary ligation. Animals were subjected to MI/R 48 hours after injection. RESULTS: Intramyocardial injection of diabetic serum sEV in the nondiabetic heart significantly exacerbated MI/R injury, as evidenced by poorer cardiac function recovery, larger infarct size, and greater cardiomyocyte apoptosis. Similarly, intramyocardial or systemic administration of diabetic adipocyte sEV or high glucose/high lipid-challenged nondiabetic adipocyte sEV significantly exacerbated MI/R injury. Diabetic epididymal fat transplantation significantly increased MI/R injury in nondiabetic mice, whereas administration of a sEV biogenesis inhibitor significantly mitigated MI/R injury in diabetic mice. A mechanistic investigation identified that miR-130b-3p is a common molecule significantly increased in diabetic serum sEV, diabetic adipocyte sEV, and high glucose/high lipid-challenged nondiabetic adipocyte sEV. Mature (but not primary) miR-130b-3p was significantly increased in the diabetic and nondiabetic heart subjected to diabetic sEV injection. Whereas intramyocardial injection of a miR-130b-3p mimic significantly exacerbated MI/R injury in nondiabetic mice, miR-130b-3p inhibitors significantly attenuated MI/R injury in diabetic mice. Molecular studies identified AMPKα1/α2, Birc6, and Ucp3 as direct downstream targets of miR-130b-3p. Overexpression of these molecules (particularly AMPKα2) reversed miR-130b-3p induced proapoptotic/cardiac harmful effect. Finally, miR-130b-3p levels were significantly increased in plasma sEV from patients with type 2 diabetes mellitus. Incubation of cardiomyocytes with diabetic patient sEV significantly exacerbated ischemic injury, an effect blocked by miR-130b-3p inhibitor. CONCLUSIONS: We demonstrate for the first time that miR-130b-3p enrichment in dysfunctional adipocyte-derived sEV, and its suppression of multiple antiapoptotic/cardioprotective molecules in cardiomyocytes, is a novel mechanism exacerbating MI/R injury in the diabetic heart. Targeting miR-130b-3p mediated pathological communication between dysfunctional adipocytes and cardiomyocytes may be a novel strategy attenuating diabetic exacerbation of MI/R injury.


Assuntos
Adipócitos/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Animais , Humanos , Masculino , Camundongos
20.
Am J Physiol Heart Circ Physiol ; 320(4): H1276-H1289, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513081

RESUMO

Recent data supporting any benefit of stem cell therapy for ischemic heart disease have suggested paracrine-based mechanisms via extracellular vesicles (EVs) including exosomes. We have previously engineered cardiac-derived progenitor cells (CDCs) to express a peptide inhibitor, ßARKct, of G protein-coupled receptor kinase 2, leading to improvements in cell proliferation, survival, and metabolism. In this study, we tested whether ßARKct-CDC EVs would be efficacious when applied to stressed myocytes in vitro and in vivo. When isolated EVs from ßARKct-CDCs and control GFP-CDCs were added to cardiomyocytes in culture, they both protected against hypoxia-induced apoptosis. We tested whether these EVs could protect the mouse heart in vivo, following exposure either to myocardial infarction (MI) or acute catecholamine toxicity. Both types of EVs significantly protected against ischemic injury and improved cardiac function after MI compared with mice treated with EVs from mouse embryonic fibroblasts; however, ßARKct EVs treated mice did display some unique beneficial properties including significantly altered pro- and anti-inflammatory cytokines. Importantly, in a catecholamine toxicity model of heart failure (HF), myocardial injections of ßARKct-containing EVs were superior at preventing HF compared with control EVs, and this catecholamine toxicity protection was recapitulated in vitro. Therefore, introduction of the ßARKct into cellular EVs can have improved reparative properties in the heart especially against catecholamine damage, which is significant as sympathetic nervous system activity is increased in HF.NEW & NOTEWORTHY ßARKct, the peptide inhibitor of GRK2, improves survival and metabolic functions of cardiac-derived progenitor cells. As any benefit of stem cells in the ischemic and injured heart suggests paracrine mechanisms via secreted EVs, we investigated whether CDC-ßARKct engineered EVs would show any benefit over control CDC-EVs. Compared with control EVs, ßARKct-containing EVs displayed some unique beneficial properties that may be due to altered pro- and anti-inflammatory cytokines within the vesicles.


Assuntos
Vesículas Extracelulares/transplante , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Transplante de Células-Tronco , Animais , Apoptose , Hipóxia Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Comunicação Parácrina , Peptídeos/genética , Ratos , Proteínas Recombinantes/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA