Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Phys Rev Lett ; 132(24): 246501, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949356

RESUMO

Electrons residing in a flat-band system can play a vital role in triggering spectacular phenomenology due to relatively large interactions and spontaneous breaking of different degeneracies. In this work, we demonstrate chirally twisted triple bilayer graphene, a new moiré structure formed by three pieces of helically stacked Bernal bilayer graphene, as a highly tunable flat-band system. In addition to the correlated insulators showing at integer moiré fillings, commonly attributed to interaction induced symmetry broken isospin flavors in graphene, we observe abundant insulating states at half-integer moiré fillings, suggesting a longer-range interaction and the formation of charge density wave insulators which spontaneously break the moiré translation symmetry. With weak out-of-plane magnetic field applied, as observed half-integer filling states are enhanced and more quarter-integer filling states appear, pointing toward further quadrupling moiré unit cells. The insulating states at fractional fillings combined with Hartree-Fock calculations demonstrate the observation of a new type of correlated charge density wave insulators in graphene and points to a new accessible twist manner engineering correlated moiré electronics.

2.
Fish Shellfish Immunol ; 144: 109247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006905

RESUMO

Mandarin fish (Siniperca chuatsi) is a valuable freshwater fish species widely cultured in China. Its aquaculture production is challenged by bacterial septicaemia, which is one of the most common bacterial diseases. Antimicrobial peptides (AMPs) play a critical role in the innate immune system of fish, exhibiting defensive and inhibitory effects against a wide range of pathogens. This study aimed to identify the antimicrobial peptide genes in mandarin fish using transcriptomes data obtained from 17 tissue in our laboratory. Through nucleotide sequence alignment and protein structural domain analysis, 15 antimicrobial peptide genes (moronecidin, pleurocidin, lysozyme g, thymosin ß12, hepcidin, leap 2, ß-defensin, galectin 8, galectin 9, apoB, apoD, apoE, apoF, apoM, and nk-lysin) were identified, of which 9 antimicrobial peptide genes were identified for the first time. In addition, 15 AMPs were subjected to sequence characterization and protein structure analysis. After injection with Aeromonas hydrophila, the number of red blood cells, hemoglobin concentration, and platelet counts in mandarin fish showed a decreasing trend, indicating partial hemolysis. The expression change patterns of 15 AMP genes in the intestine after A. hydrophila infection were examined by using qRT-PCR. The results revealed, marked up-regulation (approximately 116.04) of the hepcidin gene, down-regulation of the piscidin family genes expression. Moreover, most AMP genes were responded in the early stages after A. hydrophila challenge. This study provides fundamental information for investigating the role of the different antimicrobial peptide genes in mandarin fish in defense against A. hydrophila infection.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Transcriptoma , Hepcidinas/genética , Hepcidinas/metabolismo , Aeromonas hydrophila/genética , Peptídeos Antimicrobianos , Peixes/genética , Proteínas de Peixes/química , Galectinas/genética
3.
Angew Chem Int Ed Engl ; 63(10): e202318143, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38190621

RESUMO

In the development of high-performance organic solar cells (OSCs), the self-organization of organic semiconductors plays a crucial role. This study focuses on the precisely manipulation of molecular assemble via tuning alkyl side-chain topology in a series of low-cost nonfused-ring electron acceptors (NFREAs). Among the three NFREAs investigated, DPA-4, which possesses an asymmetric alkyl side-chain length, exhibits a tight packing in the crystal and high crystallinity in the film, contributing to improved electron mobility and favorable film morphology for DPA-4. As a result, the OSC device based on DPA-4 achieves an excellent power conversion efficiency of 16.67 %, ranking among the highest efficiencies for NFREA-based OSCs.

4.
Phys Rev Lett ; 131(9): 096801, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721824

RESUMO

Most nonferroelectric two-dimensional materials can be endowed with so-called sliding ferroelectricity via nonequivalent homobilayer stacking, which is not applicable to monoelement systems like pure graphene bilayer with inversion symmetry at any sliding vector. Herein, we show first-principles evidence that multilayer graphene with N>3 can all be ferroelectric, where the polarizations of polar states stem from the symmetry breaking in stacking configurations of across layer instead of adjacent layer, which are electrically switchable via interlayer sliding. The nonpolar states can also be electrically driven to polar states via sliding, and more diverse states with distinct polarizations will emerge in more layers. In contrast to the ferroelectric moiré domains with opposite polarization directions in twisted bilayers reported previously, the moiré pattern in some multilayer graphene systems (e.g., twisted monolayer-trilayer graphene) possess nonzero net polarizations with domains of the same direction separated by nonpolar regions, which can be electrically reversed upon interlayer sliding. The distinct moiré bands of two polar states should facilitate electrical detection of such sliding moiré ferroelectricity during switching.

5.
BMC Oral Health ; 23(1): 85, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765308

RESUMO

BACKGROUND: Common chronic infections induced low-grade inflammation has been correlated with atherosclerosis as supported by strong evidence. The balance between pro-and anti-inflammatory factors was exploited to elucidate the effects of chronic periodontitis on diabetes-associated atherosclerosis. METHODS: Study subjects encompassed 30 SPF male rats randomly divided into four groups: A group (NC), B group (T2DM), C group (CP), D group (DM + CP). After developing the model, blood samples were collected from the angular vein analyze serum APN, hs-CRP, and blood lipid. the carotid artery was isolated for HE staining. RESULT: Compared with group A, the serum APN in group B, C and D decreased gradually with the progression of the disease. Serum hs-CRP in group B, C and D was significantly increased. At T3, T4 and T5 in group B, C and D, APN/hs-CRP significantly decreased. TC, LDL and TG significantly increased in group B, D; HDL significantly decreased in group C. Carotid artery HE staining showed: compared with group A, different degrees of endothelial defect, destruction of elastic fibers in the middle membrane, disorder of smooth muscle arrangement, and partial dissolution 、 fragmentation and Calcium salt deposition necrosis occurred in group B, C and D. CONCLUSION: Enhanced systemic inflammation, decreased adiponectin level, and disorganized lipid metabolism with or without type 2 diabetes attributed to local inflammation of periodontitis can result in an imbalance of pro-inflammatory and anti-inflammatory effects. Therefore, it's more meaningful to predict the progression of DAA with anti-inflammatory/pro-inflammatory variation.


Assuntos
Aterosclerose , Periodontite Crônica , Diabetes Mellitus Tipo 2 , Masculino , Ratos , Animais , Proteína C-Reativa/metabolismo , Inflamação , Periodontite Crônica/complicações
6.
BMC Oral Health ; 23(1): 723, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803323

RESUMO

BACKGROUND: Although obstructive sleep apnea (OSA) and periodontitis are associated, whether this association is causative is uncertain. METHODS: We conducted a bidirectional Mendelian randomization (MR) analysis using data from publically accessible genome-wide association studies. The single-nucleotide polymorphisms (SNPs) for OSA were derived from 16,761 cases and 201,194 controls. The pooled data of periodontitis association involved up to 17,353 individuals. Disease-associated single-nucleotide polymorphisms were selected as an instrumental variable at the genome-wide significance level (p < 5.0 × 10- 6). Subsequently, the causal effects were estimated using three different methods: inverse variance weighting (IVW), MR-Egger, and weighted median. Then, these causal estimates were expressed as dominance ratios [odds ratio (OR)]. RESULTS: The MR analysis revealed that genetically determined OSA promotes the development of periodontitis [ IVW OR = 1.117, 95% confidence interval (CI) = 1.001-1.246, p = 0.048). Furthermore, no causal effect of genetically predicted periodontitis on OSA was noted in the reverse MR analysis (IVW OR = 1, 95% CI: 0.95-1.06, p = 0.87). The trend in results from the MR-Egger regression and weighted median (WM) was consistent with that in results from the IVW method. The robustness of the results was confirmed by the sensitivity analysis. CONCLUSIONS: In summary, the results of our MR investigation suggest an association between OSA and periodontitis, proposing that early screening and treatment of OSA is beneficial for the prevention and prognosis of periodontitis.


Assuntos
Periodontite , Apneia Obstrutiva do Sono , Humanos , Estudo de Associação Genômica Ampla , Razão de Chances , Periodontite/genética , Polimorfismo de Nucleotídeo Único/genética , Apneia Obstrutiva do Sono/genética , Análise da Randomização Mendeliana
7.
J Am Chem Soc ; 144(32): 14731-14739, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35856335

RESUMO

Volatile solid additives (SADs) are considered as a simple yet effective approach to tune the film morphology for high-performance organic solar cells (OSCs). However, the structural effects of the SADs on the photovoltaic performance are still elusive. Herein, two volatilizable SADs were designed and synthesized. One is SAD1 with twisted conformation, while the other one is planar SAD2 with the S···O noncovalent intramolecular interactions (NIIs). The theoretical and experimental results revealed that the planar SAD2 with smaller space occupation can more easily insert between the Y6 molecules, which is beneficial to form a tighter intermolecular packing mode of Y6 after thermal treatment. As a result, the SAD2-treated OSCs exhibited less recombination loss, more balanced charge mobility, higher hole transfer rate, and more favorable morphology, resulting in a record power conversion efficiency (PCE) of 18.85% (certified PCE: 18.7%) for single-junction binary OSCs. The universality of this study shed light on understanding the conformation effects of SADs on photovoltaic performances of OSCs.

8.
Small ; 18(4): e2104215, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841671

RESUMO

Although the rapid development of polymer solar cells (PSCs) has been achieved, it is still a great challenge to explore efficient ways for improving power conversion efficiency (PCE) of PSCs from materials and device engineering. Ternary strategy has been confirmed as an efficient way to improve PCE of PSCs by employing three kinds of materials. In this work, one polymer donor PM6, and two non-fullerene materials N3 and MF1 are selected to prepare ternary PSCs with layer-by-layer (LbL) or bulk-heterojunction (BHJ) structure. The LbL and BHJ-PSCs exhibit PCEs of 16.75% and 16.76% with 15 wt% MF1 content in acceptors, corresponding to over 5% or 4% PCE improvement compared with N3-based binary PSCs with LbL or BHJ structure. The PCE improvement is mainly attributed to the fill factor enhancement from 73.29% to 76.95% for LbL-PSCs or from 74.13% to 77.51% for BHJ-PSCs by employing the ternary strategy. This work indicates that ternary strategy has great potential in preparing highly efficient LbL-PSCs via simultaneously optimizing molecular arrangement and the thickness of each layer.

9.
Opt Express ; 30(10): 17054-17069, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221536

RESUMO

Higher-order topological insulator (HOTI) occupies an important position in topological band theory due to its exotic bulk-edge correspondence. Recently, it has been predicted that external magnetic field can induce novel topological phases in 2D HOTIs. However, up to now the theoretical description is still incomplete and the experimental realization is still lacking. Here we proposed a superconducting quantum circuit simulator of 2D Su-Schriffer-Heeger lattice, which is one of the most celebrated HOTI models, and investigate consequently the influence of the continuously varying magnetic field. By using the parametric conversion coupling method, we can establish in principle the time- and site-resolved tunable hopping constants in the proposed architecture, thus providing an ideal platform for investigating the higher-order topological phase transitions induced by continuously varying magnetic field. Our numerical calculation further shows that the higher-order topology of the lattice, which manifests itself through the existence of the zero energy corner modes, exhibit exotic and rich dependence on the imposed magnetic field and the inhomogeneous hopping strength. To probe the proposed magnetic-field-induced topological phase transition, we study the response of the lattice to the corner site pumping in the steady state limit, with results implying that the predicted topological phase boundaries can be unambiguously identified by the measurement of the corner sites and their few neighbors. Requiring only current level of technology, our scheme can be readily tested in experiment and may pave an alternative way towards the future investigation of HOTIs under various mechanisms including magnetic field, disorder, and strong correlation.

10.
J Periodontal Res ; 57(3): 660-669, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35435999

RESUMO

OBJECTIVES: Periodontal infections are related to the expansion of diabetes cardiovascular problems. However, the pathological process and probable mechanism remain unexplained. This study investigated the impact of periodontitis on streptozotocin (STZ)-induced diabetes rats' carotid artery. METHODS: We randomized 24 Sprague-Dawley (SD) rats into four groups: control, chronic periodontitis (CP), diabetes mellitus (DM), and DM +CP groups. Fasting blood glucose (FBG) and hemoglobin A1c (HBA1c ) were measured to verify the establishment of the DM model. After euthanasia, the maxillary was collected for further studies like hematoxylin-eosin (HE), Masson staining, and micro-computed tomography (micro-CT) analysis. Immunofluorescence (IF) staining was used to detect endothelial-mesenchymal transition (EndMT)-related markers in carotid artery wall. We further used ELISA and quantitative real-time PCR to investigate the effect of high glucose (HG) and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) on human umbilical vein endothelial cells (HUVECs). RESULTS: Compared with DM and CP groups, bone resorption and pathological changes of the vascular wall were the most serious in the DM+CP group. The vascular wall of the DM+CP group had a higher level of interleukin (IL)-6 and vascular cell adhesion molecule 1 (VCAM-1). The carotid artery vascular wall of the DM+CP group contained more cells that expressed both mesenchymal and endothelial cell markers, along with elevated transcription factor levels. Furthermore, P.g-LPS and HG upregulated the inflammatory cytokines expression and caused phenotypic changes of HUVECs in vitro. CONCLUSION: Periodontitis exacerbates endothelial dysfunctions partly via endothelial-mesenchymal transition in STZ-induced diabetes rats.


Assuntos
Periodontite Crônica , Diabetes Mellitus Experimental , Animais , Periodontite Crônica/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Porphyromonas gingivalis , Ratos , Ratos Sprague-Dawley , Estreptozocina/metabolismo , Microtomografia por Raio-X
11.
Phys Rev Lett ; 127(14): 147202, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652212

RESUMO

Exotic high-rank multipolar order parameters have been found to be unexpectedly active in more and more correlated materials in recent years. Such multipoles are usually dubbed "hidden orders" since they are insensitive to common experimental probes. Theoretically, it is also difficult to predict multipolar orders via ab initio calculations in real materials. Here, we present an efficient method to predict possible multipoles in materials based on linear response theory under random phase approximation. Using this method, we successfully predict two pure metastable magnetic octupolar states in monolayer α-RuCl_{3}, which is confirmed by self-consistent unrestricted Hartree-Fock calculations. We then demonstrate that these octupolar states can be stabilized in monolayer α-RuI_{3}, one of which becomes the octupolar ground state. Furthermore, we also predict a fingerprint of an orthogonal magnetization pattern produced by the octupole moment that can be easily detected by experiment. The method and the example presented in this Letter serve as a guide for searching multipolar order parameters in other correlated materials.

12.
Small ; 16(17): e2000441, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32243095

RESUMO

Efficient organic solar cells (OSCs) are fabricated using polymer PM6 as donor, and IPTBO-4Cl and MF1 as acceptors. The power conversion efficiency (PCE) of IPTBO-4Cl based and MF1 based binary OSCs individually arrive to 14.94% and 12.07%, exhibiting markedly different short circuit current density (JSC ) of 23.18 mA cm-2 versus 17.01 mA cm-2 , fill factor (FF) of 72.17% versus 78.18% and similar open circuit voltage (VOC ) of 0.893 V versus 0.908 V. The two acceptors, IPTBO-4Cl and MF1, have similar lowest unoccupied molecular orbital levels, which is beneficial for efficient electron transport in the ternary active layer. The PCE of optimized ternary OSCs arrives to 15.74% by incorporating 30 wt% MF1 in acceptors, resulting from the simultaneously increased JSC of 23.20 mA cm-2 , VOC of 0.897 V, and FF of 75.64% in comparison with IPTBO-4Cl based binary OSCs. The gradually increased FFs of ternary OSCs indicate the well-optimized phase separation and molecular arrangement with MF1 as morphology regulator. This work may provide a new viewpoint for selecting an appropriate third component to achieve efficient ternary OSCs from materials and photovoltaic parameters of two binary OSCs.

13.
Phys Rev Lett ; 124(3): 036803, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031860

RESUMO

Current understanding of higher-order topological insulators (HOTIs) is based primarily on crystalline materials. Here, we propose that HOTIs can be realized in quasicrystals. Specifically, we show that two distinct types of second-order topological insulators (SOTIs) can be constructed on the quasicrystalline lattices (QLs) with different tiling patterns. One is derived by using a Wilson mass term to gap out the edge states of the quantum spin Hall insulator on QLs. The other is the quasicrystalline quadrupole insulator (QI) with a quantized quadrupole moment. We reveal some unusual features of the corner states (CSs) in the quasicrystalline SOTIs. We also show that the quasicrystalline QI can be simulated by a designed electrical circuit, where the CSs can be identified by measuring the impedance resonance peak. Our findings not only extend the concept of HOTIs into quasicrystals but also provide a feasible way to detect the topological property of quasicrystals in experiments.

14.
Chemistry ; 25(48): 11246-11256, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31210399

RESUMO

Our previous discovery suggested that substituents on the 1,7 positions delicately modulate the sensing ability of the meso-arylmercapto boron-dipyrromethene (BODIPY) to biothiols. In this work, the impact of delicate modulations on the sensing ability is investigated. Therefore, 1,7-dimethyl, 3,5-diaryl substituted BODIPY is designed and developed and its conformationally restricted species with a meso-arylmercapto moiety (DM-BDP-SAr and DM-BDP-R-SAr) as selective fluorescent probes for Cys. Moreover, the lysosome-target probes (Lyso-S and Lyso-D) based on DM-BDP-SAr carrying one or two morpholinoethoxy moieties were developed. They were able to detect Cys selectively in vitro with low detection limits. Both Lyso-S and Lyso-D localized nicely in lysosomes in living HeLa cells and exhibited red fluorescence for Cys. Moreover, a novel fluorescence quenching mechanism was proposed from the calculations by density functional theory (DFT). The probes may go through intersystem crossing (from singlet excited state to triplet excited state) to result in fluorescence quenching.

15.
Phys Chem Chem Phys ; 21(10): 5790-5795, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30801601

RESUMO

Solution processed interfacial layers are commonly employed in bulk heterojunction organic solar cells (OSCs) for better charge collection. PDIN interfacial layers were prepared by employing a static or dynamic spin coating method from PDIN methanol solution, and defined as the S-PDIN or D-PDIN layer. The OSCs with a S-PDIN layer exhibit 13.88% power conversion efficiency (PCE) with a virtual high short circuit density (JSC) of 26.45 mA cm-2 and relatively low fill factor (FF) of 58.94% during the current density versus voltage (J-V) measurement without a shadow mask. 12.56% PCE is achieved for OSCs with a D-PDIN layer, along with a JSC of 18.85 mA cm-2 and FF of 74.88%. Over 77% FFs are obtained for OSCs with a S-PDIN or D-PDIN layer during J-V measurement with a shadow mask, and both OSCs exhibit a very similar JSC and PCE. The virtual high JSCs and relatively low FF of OSCs with a S-PDIN layer may be due to the enhanced conductivity of PEDOT:PSS during preparation of the PDIN layer by the SSC method, which can be further confirmed from the OSCs with a methanol treated PEDOT:PSS layer. This work indicates that a well-balanced JSC and FF should be an important evaluating indicator for efficient OSCs, and an appropriate shadow mask is necessary to measure the J-V curves of OSCs with a solution processed interfacial layer.

16.
Cancer Cell Int ; 18: 102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013454

RESUMO

BACKGROUND: Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a hydroxycinnamic acid derived from a rich polyphenolic compound. This study aimed to investigate the effect of ferulic acid (4-hydroxy-3-methoxycinnamic acid; FA) on cell proliferation, invasion, apoptosis, and autophagy in Hela and Caski cervical carcinoma cell lines. METHODS: The cell proliferation of FA in Hela and Caski cells were detected by MTT assay. The cell invasion of FA in Hela and Caski cells were detected by Transwell assay. Subsequently, MMP-9 mRNA expression for cell invasion was detected by RT-PCR. Additionally, cell cycle and apoptosis were assayed using flow cytometry. Expression levels of 7 proteins for both cell cycle and autophagy were measured by Western blot analysis. RESULTS: After treated with FA (2.0 mM) for 48 h, the inhibition rates of FA in Hela and Caski cells were 88.3 and 85.4%, respectively. In addition, FA inhibited cell invasion through reducing MMP-9 mRNA expression. FA induced arrest in G0/G1 phase of the cell cycle in Hela and Caski cells with dose dependent (P < 0.05). Meanwhile, FA induced the cell cycle-related proteins expression such as p53 and p21, and reduced Cyclin D1 and Cyclin E levels. Moreover, FA decreased the autophagy-related proteins such as LC3-II, Beclin1 and Atg12-Atg5 in a dose-dependent manner. CONCLUSION: FA can significantly inhibit cell proliferation and invasion in Hela and Caski cells. It might be acted as an anti-cancer drug through inhibiting the autophagy and inducing cell cycle arrest in human cervical carcinoma cells.

17.
Analyst ; 143(23): 5728-5735, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30320848

RESUMO

Biological thiols, especially low molecular weight thiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play a pivotal role in physiological and pathological systems. Thus, the detection of biothiols is highly important for early diagnosis of diseases and evaluation of disease progression. Herein, we developed a highly selective and sensitive ratiometric fluorescent 8-Cl BODIPY-based probe with high fluorescence quantum yields. The probe displayed a sensitive response to Cys and Hcy over other biothiols, which can be visualized colorimetrically and/or fluorescently. The probe was successfully applied to detect Cys in human plasma, demonstrating its great value for practical application in biological sample analysis.


Assuntos
Compostos de Boro/química , Cisteína/sangue , Corantes Fluorescentes/química , Compostos de Boro/síntese química , Corantes Fluorescentes/síntese química , Homocisteína/sangue , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Estrutura Molecular , Espectrometria de Fluorescência/métodos
18.
AAPS PharmSciTech ; 19(1): 275-283, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28702817

RESUMO

Tamibarotene (Am80) has good curative effect on advanced hepatocellular carcinoma (HCC). To improve the therapeutic efficacy furtherly, we prepared tamibarotene-loaded PLGA microspheres (Am80-PLGA-MS) for intratumoral injection. Firstly, Am80-PLGA-MS were prepared by emulsion-solvent evaporation method. Subsequently, microspheres were characterized by particle size analysis, drug loading (DL), and entrapment efficiency (EE). Finally, the drug release characteristics in vitro, pharmacokinetic, and pharmacodynamics were studied separately. According to results obtained, microspheres were spherical with a uniform particle size 7.04 ± 0.03 µm and its EE and DL were 82.23 ± 0.74 and 11.74 ± 0.11%, respectively. In vitro, Am80-PLGA-MS can release drug for 14 days and its release behavior was fitted with the Higuchi equation. In pharmacokinetic studies, the t1/2ß, MRT, and AUC of microspheres were 15.43-fold, 8.62-fold, and 9.98-fold those of Am80 solution, respectively, which revealed that the utilization of drug was improved obviously. The pharmacodynamics studies showed that the tumor doubling time, growth inhibition rate, and specific growth rate of tumor of Am80-PLGA-MS were 1.34 times, 2.63 times, and 0.72 times those of drug solution, respectively, indicating that the inhibitory effect on tumor by the microspheres was significantly improved. In summary, Am80-PLGA-MS are promising carrier to enhance the inhibitory effect on tumor, which will provide significantly clinical value for treatment of HCC.


Assuntos
Antineoplásicos/uso terapêutico , Benzoatos/uso terapêutico , Ácido Láctico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Ácido Poliglicólico , Tetra-Hidronaftalenos/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Benzoatos/administração & dosagem , Benzoatos/farmacocinética , Liberação Controlada de Fármacos , Feminino , Injeções Intralesionais , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tetra-Hidronaftalenos/administração & dosagem , Tetra-Hidronaftalenos/farmacocinética
19.
Opt Express ; 25(15): 17364-17374, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789228

RESUMO

The Lieb lattice featuring flat band is not only important in strongly-correlated many-body physics, but also can be utilized to inspire new quantum devices. Here we propose an optomechanical Lieb lattice, where the flat-band physics of photon-phonon polaritons is demonstrated. The tunability of the band structure of the optomechanical arrays allows one to obtain an approximate photon or phonon flat band as well as the transition between them. This ultimately leads to the result that the controllable photon or phonon localization could be realized by the path interference effects. This study offers an alternative approach to explore the exotic photon and phonon many-body effects, which has potential applications in the future hybrid-photon-phonon quantum network and engineering new type solid-state quantum devices.

20.
Phys Chem Chem Phys ; 19(21): 13650-13657, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28513706

RESUMO

Using density-functional theory, we investigate the electronic and magnetic properties of an adatom (Na, Cu and Fe) on ABA- and ABC-stacked (Bernal and rhombohedral) trilayer graphenes. In particular, we study the influence of an applied gate voltage on magnetism, as it modifies the electronic states of the trilayer graphene (TLG) as well as changes the adatom spin states. Our study performed for a choice of three different adatoms (Na, Cu, and Fe) shows that the nature of adatom-graphene bonding evolves from ionic to covalent in moving from an alkali metal (Na) to a transition metal (Cu or Fe). Applying an external electric field (EEF) to TLG systems with different stacking orders results in the transition between high- and low-spin states in the latter case (Cu, Fe) and induces a little of magnetism in the former (Na) without magnetism in the absence of an external electric field. Our study would be useful for controlled adatom magnetism and (organic) spintronic applications in nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA