Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2212326, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37190931

RESUMO

Class II histone deacetylases (HDACs) are considered as potential targets to treat Alzheimer's disease (AD). Previously, C-3 substituted phenothiazine-containing compounds with class II HDAC-inhibiting activities was found to promote neurite outgrowth. This study replaced phenothiazine moiety with phenoxazine that contains many C-3 and C-4 substituents. Some resulting compounds bearing the C-4 substituent on a phenoxazine ring displayed potent class II HDAC inhibitory activities. Structure-activity relationship (SAR) of these compounds that inhibited HDAC isoenzymes was disclosed. Molecular modelling analysis demonstrates that the potent activities of C-4 substituted compounds probably arise from π-π stacked interactions between these compounds and class IIa HDAC enzymes. One of these, compound 7d exhibited the most potent class II HDAC inhibition (IC50= 3-870 nM). Notably, it protected neuron cells from H2O2-induced neuron damage at sub-µM concentrations, but with no significant cytotoxicity. These findings show that compound 7d is a lead compound for further development of anti-neurodegenerative agents.


Assuntos
Antineoplásicos , Ácidos Hidroxâmicos , Ácidos Hidroxâmicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Peróxido de Hidrogênio/farmacologia , Relação Estrutura-Atividade , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Histona Desacetilase 1/farmacologia , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA