Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124869

RESUMO

As smart materials, electrorheological elastomers (EREs) formed by pre-treating active electrorheological particles are attracting more and more attention. In this work, four Mg-doped strontium titanate (Mg-STO) particles with spherical, dendritic, flake-like, and pinecone-like morphologies were obtained via hydrothermal and low-temperature co-precipitation. XRD, SEM, Raman, and FT-IR were used to characterize these products. The results showed that Mg-STOs are about 1.5-2.0 µm in size, and their phase structures are dominated by cubic crystals. These Mg-STOs were dispersed in a hydrogel composite elastic medium. Then, Mg-STO/glycerol/gelatin electrorheological composite hydrophilic elastomers were obtained with or without an electric field. The electric field response properties of Mg-doped strontium titanate composite elastomers were investigated. We concluded that dendritic Mg-STO composite elastomers are high-performance EREs, and the maximum value of their energy storage was 8.70 MPa. The significant electrorheological performance of these products is helpful for their applications in vibration control, force transducers, smart structures, dampers, and other fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA