Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(20): e2123511119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35537053

RESUMO

It is known that catecholamines regulate innate immune functions. The underlying mechanisms, however, are not well understood. Here we show that at least 20 members of the human chemokine receptor (CR) family heteromerize with one or more members of the α1-adrenergic receptor (AR) family in recombinant systems and that such heteromeric complexes are detectable in human monocytes and the monocytic leukemia cell line THP-1. Ligand binding to α1-ARs inhibited migration toward agonists of the CR heteromerization partners of α1B/D-ARs with high potency and 50 to 77% efficacy but did not affect migration induced by a noninteracting CR. Incomplete siRNA knockdown of α1B/D-ARs in THP-1 cells partially inhibited migration toward agonists of their CR heteromerization partners. Complete α1B-AR knockout via CRISPR-Cas9 gene editing in THP-1 cells (THP-1_ADRA1BKO) resulted in 82% reduction of α1D-AR expression and did not affect CR expression. Migration of THP-1_ADRA1BKO cells toward agonists of CR heteromerization partners of α1B/D-ARs was reduced by 82 to 95%. Our findings indicate that CR:α1B/D-AR heteromers are essential for normal function of CR heteromerization partners, provide a mechanism underlying neuroendocrine control of leukocyte trafficking, and offer opportunities to modulate leukocyte and/or cancer cell trafficking in disease processes.


Assuntos
Movimento Celular , Leucócitos , Receptores Adrenérgicos alfa 1 , Receptores CXCR4 , Membrana Celular/metabolismo , Humanos , Leucócitos/metabolismo , Neoplasias , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais
2.
Inorg Chem ; 63(7): 3506-3515, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38311840

RESUMO

ZSM-5 zeolites with modified acidity and diffusivity are employed as catalysts for the shape-selective alkylation of toluene with ethanol to para-ethyltoluene (p-ET). To avoid pore blocking and loss of active sites caused by traditional methods of enhancing para-selectivity using modifiers, here, we constructed twin intergrowth structured ZSM-5 (Z5-T), achieving modulation of the inherent acidity and diffusivity through interface engineering. The characterization results demonstrate that due to the intergrowth interface, the Z5-T catalyst forms more inherent Lewis acid sites and also renders more sinusoidal channels opened to the surface. Z5-T with an appropriate acidity and enhanced shape-selectivity inhibits side reactions such as isomerization and coke formation, demonstrating improved p-ET selectivity (>90%) and catalytic stability (>200 h) in the alkylation of toluene with ethanol.

3.
Pharmacol Res ; 190: 106730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36925091

RESUMO

We reported previously that α1-adrenoceptor (α1-AR) ligands inhibit chemokine receptor (CR) heteromerization partners of α1B/D-AR. The underlying mechanisms are unknown and in vivo evidence for such effects is missing. Utilizing CCR2 and α1B-AR as prototypical partners, we observed in recombinant systems and THP-1 cells that α1B-AR enhanced whereas its absence inhibited Gαi signaling of CCR2. Phenylephrine and phentolamine reduced the CCR2:α1B-AR heteromerization propensity and inhibited Gαi signaling of CCR2. Phenylephrine cross-recruited ß-arrestin-2 to CCR2, and reduced expression of α1B/D-AR, CR partners (CCR1/2, CXCR4) and corresponding heteromers. Phentolamine reduced CR:α1B/D-AR heteromers without affecting ß-arrestin-2 recruitment or receptor expression. Phenylephrine/phentolamine prevented leukocyte infiltration mediated via CR heteromerization partners in a murine air pouch model. Our findings document that α1-AR ligands inhibit leukocyte migration mediated by CR heteromerization partners in vivo and suggest interference with α1B-AR:CR heteromerization as a mechanism by which CR partners are inhibited. These findings provide new insights into the pharmacology of GPCR heteromers and indicate that an agonist and antagonist at one GPCR can act as antagonists at heteromerization partners of their target receptors.


Assuntos
Receptores Adrenérgicos alfa 1 , Receptores Adrenérgicos , Camundongos , Animais , Ligantes , Fentolamina , Fenilefrina/farmacologia , beta-Arrestina 2/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo
4.
J Biol Chem ; 295(44): 14893-14905, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32839271

RESUMO

The chemokine receptor CXCR4, a G protein-coupled receptor (GPCR) capable of heteromerizing with other GPCRs, is involved in many processes, including immune responses, hematopoiesis, and organogenesis. Evidence suggests that CXCR4 activation reduces thrombin/protease-activated receptor 1 (PAR1)-induced impairment of endothelial barrier function. However, the mechanisms underlying cross-talk between CXCR4 and PAR1 are not well-understood. Using intermolecular bioluminescence resonance energy transfer and proximity ligation assays, we found that CXCR4 heteromerizes with PAR1 in the HEK293T expression system and in human primary pulmonary endothelial cells (hPPECs). A peptide analog of transmembrane domain 2 (TM2) of CXCR4 interfered with PAR1:CXCR4 heteromerization. In HTLA cells, the presence of CXCR4 reduced the efficacy of thrombin to induce ß-arrestin-2 recruitment to recombinant PAR1 and enhanced thrombin-induced Ca2+ mobilization. Whereas thrombin-induced extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation occurred more transiently in the presence of CXCR4, peak ERK1/2 phosphorylation was increased when compared with HTLA cells expressing PAR1 alone. CXCR4-associated effects on thrombin-induced ß-arrestin-2 recruitment to and signaling of PAR1 could be reversed by TM2. In hPPECs, TM2 inhibited thrombin-induced ERK1/2 phosphorylation and activation of Ras homolog gene family member A. CXCR4 siRNA knockdown inhibited thrombin-induced ERK1/2 phosphorylation. Whereas thrombin stimulation reduced surface expression of PAR1, CXCR4, and PAR1:CXCR4 heteromers, chemokine (CXC motif) ligand 12 stimulation reduced surface expression of CXCR4 and PAR1:CXCR4 heteromers, but not of PAR1. Finally, TM2 dose-dependently inhibited thrombin-induced impairment of hPPEC monolayer permeability. Our findings suggest that CXCR4:PAR1 heteromerization enhances thrombin-induced G protein signaling of PAR1 and PAR1-mediated endothelial barrier disruption.


Assuntos
Receptor PAR-1/metabolismo , Receptores CXCR4/metabolismo , Trombina/metabolismo , Biopolímeros/metabolismo , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Transferência de Energia , Células HEK293 , Humanos , Pulmão/citologia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Fosforilação
5.
Biochem Biophys Res Commun ; 528(2): 368-375, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32085899

RESUMO

Recently, we reported that chemokine (C-X-C motif) receptor 4 (CXCR4) heteromerizes with α1-adrenergic receptors (AR) on the cell surface of vascular smooth muscle cells, through which the receptors cross-talk. Direct biophysical evidence for CXCR4:α1-AR heteromers, however, is lacking. Here we utilized bimolecular luminescence/fluorescence complementation (BiLC/BiFC) combined with intermolecular bioluminescence resonance energy transfer (BRET) assays in HEK293T cells to evaluate CXCR4:α1a/b/d-AR heteromerization. Atypical chemokine receptor 3 (ACKR3) and metabotropic glutamate receptor 1 (mGlu1R) were utilized as controls. BRET between CXCR4-RLuc (Renilla reniformis) and enhanced yellow fluorescent protein (EYFP)-tagged ACKR3 or α1a/b/d-ARs fulfilled criteria for constitutive heteromerization. BRET between CXCR4-RLuc and EYFP or mGlu1R-EYFP were nonspecific. BRET50 for CXCR4:ACKR3 and CXCR4:α1a/b/d-AR heteromers were comparable. Stimulation of cells with phenylephrine increased BRETmax of CXCR4:α1a/b/d-AR heteromers without affecting BRET50; stimulation with CXCL12 reduced BRETmax of CXCR4:α1a-AR heteromers, but did not affect BRET50 or BRETmax/50 for CXCR4:α1b/d-AR. A peptide analogue of transmembrane domain (TM) 2 of CXCR4 reduced BRETmax of CXCR4:α1a/b/d-AR heteromers and increased BRET50 of CXCR4:α1a/b-AR interactions. A TM4 analogue of CXCR4 did not alter BRET. We observed CXCR4, α1a-AR and mGlu1R homodimerization by BiFC/BiLC, and heteromerization of homodimeric CXCR4 with proto- and homodimeric α1a-AR by BiFC/BiLC BRET. BiFC/BiLC BRET for interactions between homodimeric CXCR4 and homodimeric mGlu1R was nonspecific. Our findings suggest that the heteromerization affinity of CXCR4 for ACKR3 and α1-ARs is comparable, provide evidence for conformational changes of the receptor complexes upon agonist binding and support the concept that proto- and oligomeric CXCR4 and α1-ARs constitutively form higher-order hetero-oligomeric receptor clusters.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Multimerização Proteica , Receptores Adrenérgicos alfa 1/metabolismo , Receptores CXCR4/metabolismo , Quimiocina CXCL12/farmacologia , Células HEK293 , Humanos , Peptídeos/farmacologia , Fenilefrina/farmacologia , Ligação Proteica , Receptores CXCR4/química
6.
Circ Res ; 122(6): 821-835, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29352041

RESUMO

RATIONALE: Atrial fibrillation (AF) is the most common arrhythmia, and advanced age is an inevitable and predominant AF risk factor. However, the mechanisms that couple aging and AF propensity remain unclear, making targeted therapeutic interventions unattainable. OBJECTIVE: To explore the functional role of an important stress response JNK (c-Jun N-terminal kinase) in sarcoplasmic reticulum Ca2+ handling and consequently Ca2+-mediated atrial arrhythmias. METHODS AND RESULTS: We used a series of cutting-edge electrophysiological and molecular techniques, exploited the power of transgenic mouse models to detail the molecular mechanism, and verified its clinical applicability in parallel studies on donor human hearts. We discovered that significantly increased activity of the stress response kinase JNK2 (JNK isoform 2) in the aged atria is involved in arrhythmic remodeling. The JNK-driven atrial proarrhythmic mechanism is supported by a pathway linking JNK, CaMKII (Ca2+/calmodulin-dependent kinase II), and sarcoplasmic reticulum Ca2+ release RyR2 (ryanodine receptor) channels. JNK2 activates CaMKII, a critical proarrhythmic molecule in cardiac muscle. In turn, activated CaMKII upregulates diastolic sarcoplasmic reticulum Ca2+ leak mediated by RyR2 channels. This leads to aberrant intracellular Ca2+ waves and enhanced AF propensity. In contrast, this mechanism is absent in young atria. In JNK challenged animal models, this is eliminated by JNK2 ablation or CaMKII inhibition. CONCLUSIONS: We have identified JNK2-driven CaMKII activation as a novel mode of kinase crosstalk and a causal factor in atrial arrhythmic remodeling, making JNK2 a compelling new therapeutic target for AF prevention and treatment.


Assuntos
Fibrilação Atrial/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Células Cultivadas , Humanos , Masculino , Camundongos , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
7.
J Mol Cell Cardiol ; 114: 105-115, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146153

RESUMO

BACKGROUND: The stress kinase c-jun N-terminal kinase (JNK) is critical in the pathogenesis of cardiac diseases associated with an increased incidence of atrial fibrillation (AF), the most common arrhythmia in the elderly. We recently discovered that JNK activation is linked to the loss of gap junction connexin43 (Cx43) and enhanced atrial arrhythmogenicity. However, direct evidence for JNK-mediated impairment of intercellular coupling (cell-cell communication) in the intact aged atrium is lacking, as is evidence for whether and how JNK suppresses Cx43 in the aged human atrium. METHODS AND RESULTS: JNK activity in human atrial samples is correlated with both reduced Cx43 expression and increasing age. Using a unique technique of optical mapping space constant measurement, we found that impaired intercellular coupling and reduced Cx43 were linked to enhanced activation of JNK in intact aged rabbit atria. These JNK-associated alterations were further confirmed in naturally JNK activated aged mice and in cardiac-specific inducible MKK7D (JNK upstream activator) young mice. Moreover, JNK inhibition, using either JNK specific inhibitors in aged wild-type (WT) mice and JNK activator anisomycin-treated young WT mice or JNK1/2 dominant-negative mice with genetically inhibited cardiac JNK activity, completely eliminated these functional abnormalities. Furthermore, we discovered for the first time that long-term JNK activation downregulates Cx43 expression via c-jun suppressed transcriptional activity of the Cx43 gene promoter. CONCLUSION: Our results demonstrate that JNK is a critical regulator of Cx43 expression, and that augmented JNK activation in aged atria downregulates Cx43 to impair cell-cell communication and promote the development of AF. JNK inhibition may represent a promising therapeutic approach to prevent or treat AF in the elderly.


Assuntos
Envelhecimento/patologia , Fibrilação Atrial/genética , Conexina 43/genética , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Miocárdio/enzimologia , Animais , Fibrilação Atrial/fisiopatologia , Células Cultivadas , Conexina 43/metabolismo , Regulação para Baixo/genética , Fenômenos Eletrofisiológicos , Ativação Enzimática , Átrios do Coração/enzimologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
8.
Mol Cell Biochem ; 434(1-2): 143-151, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28455789

RESUMO

Chemokine (C-X-C motif) receptor 4 (CXCR4) regulates cell trafficking and plays important roles in the immune system. Ubiquitin has recently been identified as an endogenous non-cognate agonist of CXCR4, which activates CXCR4 via interaction sites that are distinct from those of the cognate agonist C-X-C motif chemokine ligand 12 (CXCL12). As compared with CXCL12, chemotactic activities of ubiquitin in primary human cells are poorly characterized. Furthermore, evidence for functional selectivity of CXCR4 agonists is lacking, and structural consequences of ubiquitin binding to CXCR4 are unknown. Here, we show that ubiquitin and CXCL12 have comparable chemotactic activities in normal human peripheral blood mononuclear cells, monocytes, vascular smooth muscle, and endothelial cells. Chemotactic activities of the CXCR4 ligands could be inhibited with the selective CXCR4 antagonist AMD3100 and with a peptide analogue of the second transmembrane domain of CXCR4. In human monocytes, ubiquitin- and CXCL12-induced chemotaxis could be inhibited with pertussis toxin and with inhibitors of phospholipase C, phosphatidylinositol 3 kinase, and extracellular signal-regulated kinase 1/2. Both agonists induced inositol trisphosphate production in vascular smooth muscle cells, which could be inhibited with AMD3100. In ß-arrestin recruitment assays, ubiquitin did not sufficiently recruit ß-arrestin2 to CXCR4 (EC50 > 10 µM), whereas the EC50 for CXCL12 was 4.6 nM (95% confidence interval 3.1-6.1 nM). Both agonists induced similar chemical shift changes in the 13C-1H-heteronuclear single quantum correlation (HSQC) spectrum of CXCR4 in membranes, whereas CXCL11 did not significantly alter the 13C-1H-HSQC spectrum of CXCR4. Our findings point towards ubiquitin as a biased agonist of CXCR4.


Assuntos
Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiotaxia , Ensaio de Imunoadsorção Enzimática , Humanos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Receptores CXCR4/agonistas , Receptores CXCR4/química , Transdução de Sinais , Ubiquitina/metabolismo
9.
Arch Insect Biochem Physiol ; 89(1): 54-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639712

RESUMO

Phospholipid hydroperoxide glutathione peroxidases (PHGPXs) are essential enzymes of the cellular antioxidant defense system during insect-plant interactions. However, little attention has been devoted to the functional characterization of PHGXPs in the whitefly Bemisia tabaci. Here, we report the identification and characterization of two PHGPX genes, designated as BtQ-PHGPX1 and BtQ-PHGPX2 from the Mediterranean species of the B. tabaci complex. Sequence analysis indicated that the length of BtQ-PHGPX1 is of 942 bp with a 729 bp open-reading frame (ORF) encoding 242 amino acids, and BtQ-PHGPX2 is of 699 bp with a 567 bp ORF encoding 188 amino acids. Sequence alignment analysis showed that BtQ-PHGPX1 and BtQ-PHGPX2 shared high similarity with other known PHGPXs. The NVASXCGXT, FPCNQFXXQEPG, and IKWNFXKFLV surrounded the reactive cysteine, glutamine, and tryptophan residues, respectively. Recombinant BtQ-PHGPX1 and BtQ-PHGPX2 were overexpressed in Escherichia coli and purified. quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis with whiteflies of different development stages showed that the mRNA levels of BtQ-PHGPX2 were significantly higher in larvae than in other stages. The mRNA levels of BtQ-PHGPX2 were significantly higher than BtQ-PHGPX1 during all the developmental stages. The mRNA levels of BtQ-PHGPX1 and BtQ-PHGPX2 in female adults were relatively higher than in male adults. The expression of BtQ-PHGPX1 and BtQ-PHGPX2 was induced by the insecticide imidacloprid. These results suggest that BtQ-PHGPX1 and BtQ-PHGPX2 may participate in detoxification of oxidative hazards in B. tabaci.


Assuntos
Glutationa Peroxidase/genética , Hemípteros/genética , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Antioxidantes/metabolismo , Feminino , Glutationa Peroxidase/isolamento & purificação , Glutationa Peroxidase/metabolismo , Hemípteros/enzimologia , Imidazóis , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Larva/enzimologia , Peroxidação de Lipídeos , Masculino , Dados de Sequência Molecular , Neonicotinoides , Nitrocompostos , Filogenia , Pupa/enzimologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
10.
Mol Pharmacol ; 85(2): 357-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307699

RESUMO

Cardiomyocyte apoptosis contributes toward the loss of muscle mass in myocardial pathologies. Previous reports have implicated type I cAMP-dependent protein kinase (PKA) and p90 ribosomal S6 kinase (RSK) in cardiomyocyte apoptosis. However, the precise mechanisms and the isoform of RSK involved in this process remain undefined. Using adult rat ventricular myocytes and mouse-derived cardiac HL-1 cardiomyocytes, we demonstrate that hypoxia/reoxygenation (H/R)-induced apoptosis is accompanied by a decrease in the type I PKA regulatory subunit (PKARIα) and activation of RSK1. As previously described by us for other cell types, in cardiomyocytes, inactive RSK1 also interacts with PKARIα, whereas the active RSK1 interacts with the catalytic subunit of PKA. Additionally, small interfering (siRNA)-mediated silencing of PKARIα or disrupting the RSK1/PKARIα interactions with a small, cell-permeable peptide activates RSK1 and recapitulates the H/R-induced apoptosis. Inhibition of RSK1 or siRNA-mediated silencing of RSK1 attenuates H/R-induced apoptosis, demonstrating the role of RSK1 in cardiomyocyte apoptosis. Furthermore, silencing of RSK1 decreases the H/R-induced phosphorylation of sodium-hydrogen exchanger 1 (NHE1), and inhibition of NHE1 with 5'-N-ethyl-N-isopropyl-amiloride blocks H/R induced apoptosis, indicating the involvement of NHE1 in apoptosis. Overall, our findings demonstrate that H/R-mediated decrease in PKARIα protein levels leads to activation of RSK1, which via phosphorylation of NHE1 induces cardiomyocyte apoptosis.


Assuntos
Apoptose , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/fisiologia , Miócitos Cardíacos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Animais , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Camundongos , Miócitos Cardíacos/enzimologia , Fosforilação , Ratos , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo
11.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782603

RESUMO

It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.


Assuntos
Quimiotaxia , Monócitos , Receptores de Quimiocinas , Receptores de Vasopressinas , Humanos , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Células THP-1 , Multimerização Proteica , Células HEK293 , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Sistemas CRISPR-Cas , Transdução de Sinais , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/genética , Ligantes
12.
Biomedicines ; 12(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39200278

RESUMO

ß-adrenoceptor (ß-AR) agonists are known to antagonize thrombin-induced impairment (TII) of bovine and ovine lung endothelial barrier function. The effects of adrenoceptor agonists and other vasoactive agents on human lung microvascular endothelial cell (HULEC-5a) barrier function upon thrombin exposure have not been studied. Furthermore, it is unknown whether the in vitro effects of adrenoceptor agonists translate to lung protective effects in vivo. We observed that epinephrine, norepinephrine, and phenylephrine enhanced normal and prevented TII of HULEC-5a barrier function. Arginine vasopressin and angiotensin II were ineffective. α1B-, α2A/B-, and ß1/2-ARs were detectable in HULEC-5a by RT-PCR. Propranolol but not doxazosin blocked the effects of all adrenoceptor agonists. Phenylephrine stimulated ß2-AR-mediated Gαs activation with 13-fold lower potency than epinephrine. The EC50 to inhibit TII of HULEC-5a barrier function was 1.8 ± 1.9 nM for epinephrine and >100 nM for phenylephrine. After hemorrhagic shock and fluid resuscitation in rats, Evans blue extravasation into the lung increased threefold (p < 0.01 vs. sham). Single low-dose (1.8 µg/kg) epinephrine administration at the beginning of resuscitation had no effects on blood pressure and reduced Evans blue extravasation by 60% (p < 0.05 vs. vehicle). Our findings confirm the effects of ß-adrenoceptor agonists in HULEC-5a and suggest that low-dose ß-adrenoceptor agonist treatment protects lung vascular barrier function after traumatic hemorrhagic shock.

13.
Int J Mol Sci ; 14(1): 871-87, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23296268

RESUMO

A mitochondrial manganese superoxide dismutase from an invasive species of the whitefly Bemisia tabaci complex (Bt-mMnSOD) was cloned and analyzed. The full length cDNA of Bt-mMnSOD is 1210 bp with a 675 bp open reading frame, corresponding to 224 amino acids, which include 25 residues of the mitochondrial targeting sequence. Compared with various vertebrate and invertebrate animals, the MnSOD signature (DVWEHAYY) and four conserved amino acids for manganese binding (H54, H102, D186 and H190) were observed in Bt-mMnSOD. Recombinant Bt-mMnSOD was overexpressed in Escherichia coli, and the enzymatic activity of purified mMnSOD was assayed under various temperatures. Quantitative real-time PCR analysis with whiteflies of different development stages showed that the mRNA levels of Bt-mMnSOD were significantly higher in the 4th instar than in other stages. In addition, the in vivo activities of MnSOD in the whitefly were measured under various conditions, including exposure to low (4 °C) and high (40 °C) temperatures, transfer from a favorable to an unfavorable host plant (from cotton to tobacco) and treatment with pesticides. Our results indicate that the whitefly MnSOD plays an important role in cellular stress responses and anti-oxidative processes and that it might contribute to the successful worldwide distribution of the invasive whitefly.


Assuntos
Hemípteros/genética , Proteínas de Insetos/genética , Proteínas Mitocondriais/genética , Superóxido Dismutase/genética , Motivos de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Clonagem Molecular , Estabilidade Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Hemípteros/enzimologia , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Manganês/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/metabolismo , Temperatura
14.
FEBS Lett ; 597(15): 2017-2027, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37395117

RESUMO

It is unknown whether heteromerization between chemokine (C-X-C motif) receptor 4 (CXCR4), atypical chemokine receptor 3 (ACKR3) and α1b -adrenoceptor (α1b -AR) influences effects of the CXCR4/ACKR3 agonist chemokine (C-X-C motif) ligand 12 (CXCL12) and the noncognate CXCR4 agonist ubiquitin on agonist-promoted G protein activation. We provide biophysical evidence that both ligands stimulate CXCR4-mediated Gαi activation. Unlike CXCL12, ubiquitin fails to recruit ß-arrestin. Both ligands differentially modulate the conformation of CXCR4:ACKR3 heterodimers and its propensity to hetero-trimerize with α1b -AR. CXCR4:ACKR3 heterodimerization reduces the potency of CXCL12, but not of ubiquitin, to activate Gαi. Ubiquitin enhances phenylephrine-stimulated α1b -AR-promoted Gαq activation from hetero-oligomers comprising CXCR4. CXCL12 enhances phenylephrine-stimulated α1b -AR-promoted Gαq activation from CXCR4:α1b -AR heterodimers and reduces phenylephrine-stimulated α1b -AR-promoted Gαq activation from ACKR3 comprising heterodimers and trimers. Our findings suggest heteromer and ligand-dependent functions of the receptor partners.


Assuntos
Receptores CXCR4 , Receptores CXCR , Ligantes , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores CXCR/genética , Receptores CXCR/metabolismo , Quimiocina CXCL12/metabolismo , Fenilefrina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Ubiquitina/metabolismo , Receptores Adrenérgicos/metabolismo
15.
Cells ; 12(18)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759456

RESUMO

Long-term alcohol consumption leads to cardiac arrhythmias including atrial fibrillation (AF), the most common alcohol-related arrhythmia. While AF significantly increases morbidity and mortality in patients, it takes years for an alcoholic individual undergoing an adaptive status with normal cardiac function to reach alcoholic cardiomyopathy. The underlying mechanism remains unclear to date. In this study, we assessed the functional role of JNK2 in long-term alcohol-evoked atrial arrhythmogenicity but preserved cardiac function. Wild-type (WT) mice and cardiac-specific JNK2dn mice (with an overexpression of inactive dominant negative (dn) JNK2) were treated with alcohol (2 g/kg daily for 2 months; 2 Mo). Confocal Ca2+ imaging in the intact mouse hearts showed that long-term alcohol prolonged intracellular Ca2+ transient decay, and increased pacing-induced Ca2+ waves, compared to that of sham controls, while cardiac-specific JNK2 inhibition in JNK2dn mice precluded alcohol-evoked Ca2+-triggered activities. Moreover, activated JNK2 enhances diastolic SR Ca2+ leak in 24 h and 48 h alcohol-exposed HL-1 atrial myocytes as well as HEK-RyR2 cells (inducible expression of human RyR2) with the overexpression of tGFP-tagged active JNK2-tGFP or inactive JNK2dn-tGFP. Meanwhile, the SR Ca2+ load and systolic Ca2+ transient amplitude were both increased in ventricular myocytes, along with the preserved cardiac function in 2 Mo alcohol-exposed mice. Moreover, the role of activated JNK2 in SR Ca2+ overload and enhanced transient amplitude was also confirmed in long-term alcohol-exposed HL-1 atrial myocytes. In conclusion, our findings suggest that long-term alcohol-activated JNK2 is a key driver in preserved cardiac function, but at the expense of enhanced cardiac arrhythmogenicity. Modulating JNK2 activity could be a novel anti-arrhythmia therapeutic strategy.


Assuntos
Fibrilação Atrial , Humanos , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina , Etanol/efeitos adversos , Miócitos Cardíacos , Proteínas Quinases JNK Ativadas por Mitógeno , Isoformas de Proteínas
16.
PLoS One ; 18(4): e0284472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37071651

RESUMO

Systemic concentrations of chemokine CCL2, an agonist at chemokine receptors CCR2/3/5, have been associated with hemodynamic instability after traumatic-hemorrhagic shock. We reported previously that the CCR2 antagonist INCB3284 prevents cardiovascular collapse and reduces fluid requirements after 30min of hemorrhagic shock (HS), whereas the CCR5 antagonist Maraviroc was ineffective. The effects of CCR3 blockade after HS are unknown and information on the therapeutic potential of INCB3284 after longer periods of HS and in HS models in the absence of fluid resuscitation (FR) is lacking. The aims of the present study were to assess the effects of CCR3 blockade with SB328437 and to further define the therapeutic efficacy of INCB3284. In series 1-3, Sprague-Dawley rats were hemorrhaged to a mean arterial blood pressure (MAP) of 30mmHg, followed by FR to MAP of 60mmHg or systolic blood pressure of 90mmHg. Series 1: 30min HS and FR until t = 90min. SB328437 at t = 30min dose-dependently reduced fluid requirements by >60%. Series 2: 60min HS and FR until t = 300min. INCB3284 and SB328437 at t = 60min reduced fluid requirements by more than 65% (p<0.05 vs. vehicle) and 25% (p>0.05 vs. vehicle), respectively, until t = 220min. Thereafter, all animals developed a steep increase in fluid requirements. Median survival time was 290min with SB328437 and >300min after vehicle and INCB3284 treatment (p<0.05). Series 3: HS/FR as in series 2. INCB3284 at t = 60min and t = 200min reduced fluid requirements by 75% until t = 300min (p<0.05 vs. vehicle). Mortality was 70% with vehicle and zero with INCB3284 treatment (p<0.05). Series 4: INCB3284 and SB328437 did not affect survival time in a lethal HS model without FR. Our findings further support the assumption that blockade of the major CCL2 receptor CCR2 is a promising approach to improve FR after HS and document that the dosing of INCB3284 can be optimized.


Assuntos
Choque Hemorrágico , Ratos , Animais , Ratos Sprague-Dawley , Benzamidas , Hemorragia/complicações , Receptores CCR , Ressuscitação , Modelos Animais de Doenças
17.
J Biol Chem ; 286(49): 42027-42036, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22006925

RESUMO

Sprouty (Spry) proteins modulate the actions of receptor tyrosine kinases during development and tumorigenesis. Decreases in cellular levels of Spry, especially Sprouty2 (Spry2), have been implicated in the growth and progression of tumors of the breast, prostate, lung, and liver. During development and tumor growth, cells experience hypoxia. Therefore, we investigated how hypoxia modulates the levels of Spry proteins. Hypoxia elevated the levels of all four expressed Spry isoforms in HeLa cells. Amounts of endogenous Spry2 in LS147T and HEP3B cells were also elevated by hypoxia. Using Spry2 as a prototype, we demonstrate that silencing and expression of prolyl hydroxylase domain proteins (PHD1-3) increase and decrease, respectively, the cellular content of Spry2. Spry2 also preferentially interacted with PHD1-3 and von Hippel-Lindau protein (pVHL) during normoxia but not in hypoxia. Additionally, Spry2 is hydroxylated on Pro residues 18, 144, and 160, and substitution of these residues with Ala enhanced stability of Spry2 and abrogated its interactions with pVHL. Silencing of pVHL increased levels of Spry2 by decreasing its ubiquitylation and degradation and thereby augmented the ability of Spry2 to inhibit FGF-elicited activation of ERK1/2. Thus, prolyl hydroxylase mediated hydroxylation and subsequent pVHL-elicited ubiquitylation of Spry2 target it for degradation and, consequently, provide a novel mechanism of regulating growth factor signaling.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Hipóxia , Proteínas de Membrana , Fosforilação , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo
18.
Crit Care Explor ; 4(5): e0701, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35620770

RESUMO

Clinical correlations suggest that systemic chemokine (C-C motif) ligand (CCL) 2 release may contribute to blood pressure regulation and the development of hemodynamic instability during the early inflammatory response to traumatic-hemorrhagic shock. Thus, we investigated whether blockade of the principal CCL2 receptor chemokine (C-C motif) receptor (CCR) 2 affects blood pressure in normal animals, and hemodynamics and resuscitation fluid requirements in hemorrhagic shock models. DESIGN: Randomized prospective treatment study. SETTING: University laboratory. SUBJECTS: Male Sprague-Dawley rats. INTERVENTIONS: First, treatment of healthy anesthetized rats with increasing doses of INCB3284 or vehicle. Second, rats were hemorrhaged for 30 minutes, followed by treatment with the CCR2 antagonist INCB3284 (1.1 and 5.5 µmol/kg), the CCR5 antagonist Maraviroc (=control, 5.5 µmol/kg) or vehicle, and subsequent fluid resuscitation to maintain blood pressure until t = 90 minutes. Third, treatment of rats with 5 µmol/kg INCB3284 or vehicle after hemorrhage and fluid resuscitation until t = 300 minutes. MEASUREMENTS AND MAIN RESULTS: INCB3284 did not affect intrinsic function of isolated rat resistance arteries in pressure myography experiments. Blood pressure in anesthetized vehicle-treated animals continuously decreased by 0.09 ± 0.01 mm Hg/min (p < 0.001) but remained constant after INCB3284 injections. Systemic concentrations of the CCR2 agonists CCL2, CCL5, and CCL11 increased during hemorrhage and fluid resuscitation. INCB3284 dose-dependently reduced fluid requirements by 58% ± 11% in short-term experiments, whereas Maraviroc and vehicle-treated animals were indistinguishable. When resuscitation was performed until t = 300 minutes, INCB3284 reduced fluid requirements by 62% ± 6%, prevented from hemodynamic decompensation, reduced mortality from 50% with vehicle treatment to zero, and reduced overall tissue wet-weight/dry-weight ratios. CONCLUSIONS: Our findings suggest that CCR2 is involved in the regulation of normal cardiovascular function and during the cardiovascular stress response to hemorrhagic shock and fluid resuscitation. The present study identifies CCR2 as a drug target to reduce fluid requirements and to prevent death from hemodynamic decompensation during resuscitation from hemorrhagic shock.

19.
FEBS Lett ; 596(20): 2706-2716, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35920096

RESUMO

Previously, we reported that chemokine (C-C motif) receptor 2 (CCR2) heteromerizes with α1B -adrenoceptor (α1B -AR) in leukocytes, through which α1B -AR controls CCR2. Whether such heteromers are expressed in human vascular smooth muscle cells (hVSMCs) is unknown. Bioluminescence resonance energy transfer confirmed formation of recombinant CCR2:α1b -AR heteromers. Proximity ligation assays detected CCR2:α1B -AR heteromers in hVSMCs and human mesenteric arteries. CCR2:α1B -AR heteromerization per se enhanced α1B -AR-mediated Gαq -coupling. Chemokine (C-C motif) ligand 2 (CCL2) binding to CCR2 inhibited Gαq activation via α1B -AR, cross-recruited ß-arrestin to and induced internalization of α1B -AR in recombinant systems and in hVSMCs. Our findings suggest that CCR2 within CCR2:α1B -AR heteromers biases α1B -AR signaling and provide a mechanism for previous observations suggesting a role for CCL2/CCR2 in the regulation of cardiovascular function.


Assuntos
Quimiocina CCL2 , Receptores Adrenérgicos alfa 1 , Humanos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , beta-Arrestinas/metabolismo , Quimiocinas/metabolismo , Viés
20.
J Biol Chem ; 285(10): 6970-9, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20048145

RESUMO

Previously we showed that the inactive form of p90 ribosomal S6 kinase 1 (RSK1) interacts with the regulatory subunit, PKARIalpha, of protein kinase A (PKA), whereas the active RSK1 interacts with the catalytic subunit (PKAc) of PKA. Herein, we demonstrate that the N-terminal kinase domain (NTK) of RSK1 is necessary for interactions with PKARIalpha. Substitution of the activation loop phosphorylation site (Ser-221) in the NTK with the negatively charged Asp residue abrogated the association between RSK1 and PKARIalpha. This explains the lack of an interaction between active RSK1 and PKARIalpha. Full-length RSK1 bound to PKARIalpha with an affinity of 0.8 nm. The NTK domain of RSK1 competed with PKAc for binding to the pseudosubstrate region (amino acids 93-99) of PKARIalpha. Overexpressed RSK1 dissociated PKAc from PKARIalpha, increasing PKAc activity, whereas silencing of RSK1 increased PKAc/PKARIalpha interactions and decreased PKAc activity. Unlike PKAc, which requires Arg-95 and -96 in the pseudosubstrate region of PKARIalpha for their interactions, RSK1/PKARIalpha association requires all four Arg residues (Arg-93-96) in the pseudosubstrate site of PKARIalpha. A peptide (Wt-PS) corresponding to residues 91-99 of PKARIalpha competed for binding of RSK1 with PKARIalpha both in vitro and in intact cells. Furthermore, peptide Wt-PS (but not control peptide Mut-PS), by dissociating RSK1 from PKARIalpha, activated RSK1 in the absence of any growth factors and protected cells from apoptosis. Thus, by competing for binding to the pseudosubstrate region of PKARIalpha, RSK1 regulates PKAc activity in a cAMP-independent manner, and PKARIalpha by associating with RSK1 regulates its activation and its biological functions.


Assuntos
Domínio Catalítico , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA