Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 188(2): 50, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33495877

RESUMO

A controlled method to prepare glutathione-protected bimetallic gold-platinum nanoclusters (Au-PtNCs) has been established. The Au-PtNCs show either strong red (625 nm) or near-infrared (NIR, 805 nm) emission. Further characterizations indicated that the average particle size grows from 1.42 to 1.78 nm, the larger particles being responsible for the redshift of emission. The NIR emitted Au-PtNCs are applied as a novel ratiometric probe of Ag(I), which induces a new emission peak at ~635 nm and quenches the initial emission gradually. The determination shows very high selectivity toward Ag(I) among other metal ions. A limit of determination (10 nM) and the linear range (0.10 to 15 µM) are achieved, which is much lower than the EPA mandate of 0.46 µM for Ag(I) in drinking water. The response mechanism is attributed to the fact that the added Ag(I) has been reduced by the core of Au-PtNCs and deposited on the surface, which induces new fluorescence emission around 635 nm. In addition, the ratiometric method is feasible for Ag(I) determination in serum serum with good recovery (between 98.3% and 102.0%, n = 3), showing very high application potential. The present study provides a controlled method to prepare Au-PtNCs with strong red and NIR emission and supplies a novel NIR ratiometric probe of Ag(I). Schematic presentation of the controlled preparation of glutathione-protected bimetallic gold-platinum nanoclusters (Au-PtNCs) with either red or near-infrared (NIR) emission, and application in ratiometric detection of Ag(I) with high selectivity and sensitivity.


Assuntos
Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Prata/sangue , Animais , Bovinos , Glutationa/química , Ouro/química , Limite de Detecção , Platina/química , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise
2.
Macromol Rapid Commun ; 41(14): e2000198, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32529702

RESUMO

Unlike normal conversion from aggregation caused quenching (ACQ) to aggregation induced emission enhancement (AIEE) by introducing aromatic rotors tuning aggregation modes, in this study, it is achieved through a supramolecular assembly with polymer. Thus, it provides an easy approach for the inhibition of unwanted H-aggregation between luminogens. As a kind of flavonoid, morin has shown great potential in therapeutics. However, its poor solubility and weak emission in aqueous solution greatly limit its bioapplications. When morin is dissolved in aqueous solution, the presence of 30 × 10-6 m polyethyleneimine (PEI) induces significant emission enhancement and bathochromic shift. Consequently, the quantum yield (QY) of 24.5% is either achieved by assembling with PEI, versus 0.76% of its ACQ state composed of H-aggregation in aqueous solution. Particularly, the in-depth mechanism studies reveal that it is the assembly with PEI that disassociates the H-aggregation in aqueous solution and further restricts the stretching and/or rotation of morin, which eventually reduce the nonradiative decays and enhance the emission. Therefore, the present study reports a unique phenomenon of AIEE effects on morin. Particularly the in-depth investigation on intrinsic mechanisms will highlight and greatly expand the development of more luminogens from traditional Chinese herbals.


Assuntos
Flavonoides , Polietilenoimina , Corantes Fluorescentes , Água
3.
Mikrochim Acta ; 187(1): 41, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31832775

RESUMO

The fluorescence of adenosine monophosphate-capped bimetallic gold and silver nanoclusters (type AuAgNC@AMP) is strongly enhanced and blue shifted in the presence of Al(III). As confirmed by transmission electron microscopy, the AuAgNC nanodots are converted to larger assembled spheres of type AuAgNC-Al(III). The fluorescence enhancement is attributed to aggregation-induced emission enhancement (AIEE). The fluorescence of the AuAgNC-Al(III) assembly (with excitation and emission maxima at 340 and 540 nm) is quenched by cysteine (Cys). The effect was applied to the fluorometric determination of Cys. The assay works in the 1.0 to 16.0 µM Cys concentration range and has a 50 nM limit of detection. The method was successfully applied to analyze Cys-spiked mineral waters and serum. The quenching mechanism is explored in depth. It is attributed to the partial replacement of AMP by Cys at the surface of the AuAgNC and alteration of the assembly structure from large spherical particles to a strip shape. Graphical abstractSchematic representation of the fluorescence enhancement of bimetallic nanoclusters capped with adenosine monophosphate by using Al(III), and its application in selective and sensitive determination of cysteine via ligand replacement and reassembly.


Assuntos
Monofosfato de Adenosina/química , Alumínio/química , Cisteína/análise , Fluorometria , Nanopartículas Metálicas/química , Fluorescência , Ouro/química , Íons/química , Tamanho da Partícula , Prata/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA