Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675999

RESUMO

The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery.

2.
Sensors (Basel) ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203118

RESUMO

This paper proposes a novel approach to predicting the useful life of rotating machinery and making fault diagnoses using an optimal blind deconvolution and hybrid invertible neural network. First, a new optimal adaptive maximum second-order cyclostationarity blind deconvolution (OACYCBD) is developed for denoising vibration signals obtained from rotating machinery. This technique is obtained from the optimization of traditional adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD). To optimize the weights of conventional ACYCBD, the proposed method utilizes a probability density function (PDF) of Monte Carlo to assess fault-related incipient changes in the vibration signal. Cross-entropy is used as a convergence criterion for denoising. Because the denoised signal carries information related to the health of the rotating machinery, a novel health index is calculated in the second step using the peak value and square of the arithmetic mean of the signal. The novel health index can change according to the degradation of the health state of the rotating bearing. To predict the remaining useful life of the bearing in the final step, the health index is used as input for a newly developed hybrid invertible neural network (HINN), which combines an invertible neural network and long short-term memory (LSTM) to forecast trends in bearing degradation. The proposed approach outperforms SVM, CNN, and LSTM methods in predicting the remaining useful life of bearings, showcasing RMSE values of 0.799, 0.593, 0.53, and 0.485, respectively, when applied to a real-world industrial bearing dataset.

3.
Sensors (Basel) ; 22(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236633

RESUMO

Rotating machinery plays an important role in industrial systems, and faults in the machinery may damage the system health. A novel image-based diagnosis method using improved deep convolutional generative adversarial networks (DCGAN) is proposed for the feature recognition and fault classification of rotating machinery. First, vibration signal data from the rotating machinery is transformed into time-frequency feature 2-D image data by a continuous wavelet transform and used for fault classification with the neural network method. The adaptive deep convolution neural network (ADCNN) is then combined with the generative adversarial networks (GANs) to improve the performance of the feature self-learning ability from input data. Compared with different fault diagnosis methods, the proposed method has better performance for image feature classification in rotating machinery.


Assuntos
Redes Neurais de Computação , Análise de Ondaletas , Inteligência , Aprendizagem , Reconhecimento Psicológico
4.
Sensors (Basel) ; 22(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632372

RESUMO

Acoustic emission techniques are widely used to monitor industrial pipelines. Intelligent methods using acoustic emission signals can analyze acoustic waves and provide important information for leak detection and localization. To address safety and protect the operation of industrial pipelines, a novel hybrid approach based on acoustic emission signals is proposed to achieve reliable leak localization. The proposed method employs minimum entropy deconvolution using the maximization kurtosis norm of acoustic emission signals to remove noise and identify important feature signals. In addition, the damping frequency energy based on the dynamic differential equation with damping term is designed to extract important energy information, and a smooth envelope for the feature signals over time is generated. The zero crossing tracks the arrival time via the envelope changes and identifies the time difference of the acoustic waves from the two channels, each of which is installed at the end of a pipeline. Finally, the time data are combined with the velocity data to localize the leak. The proposed approach has better performance than the existing generalized cross-correlation and empirical mode decomposition combined with the generalized cross-correlation methods, providing proper leak localization in the industrial pipeline.

5.
Sensors (Basel) ; 22(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433553

RESUMO

In the machine learning and data science pipelines, feature extraction is considered the most crucial component according to researchers, where generating a discriminative feature matrix is the utmost challenging task to achieve high classification accuracy. Generally, the classical feature extraction techniques are sensitive to the noisy component of the signal and need more time for training. To deal with these issues, a comparatively new feature extraction technique, referred to as a wavelet scattering transform (WST) is utilized, and incorporated with ML classifiers to design a framework for bearing fault classification in this paper. The WST is a knowledge-based technique, and the structure is similar to the convolution neural network. This technique provides low-variance features of real-valued signals, which are usually necessary for classification tasks. These signals are resistant to signal deformation and preserve information at high frequencies. The current signal data from a publicly available dataset for three different bearing conditions are considered. By combining the scattering path coefficients, the decomposition coefficients from the 0th and 1st layers are considered as features. The experimental results demonstrate that WST-based features, when used with ensemble ML algorithms, could achieve more than 99% classification accuracy. The performance of ANN models with these features is similar. This work exhibits that utilizing WST coefficients for the motor current signal as features can improve the bearing fault classification accuracy when compared to other feature extraction approaches such as empirical wavelet transform (EWT), information fusion (IF), and wavelet packet decomposition (WPD). Thus, our proposed approach can be considered as an effective classification method for the fault diagnosis of rotating machinery.


Assuntos
Redes Neurais de Computação , Análise de Ondaletas , Aprendizado de Máquina , Algoritmos
6.
Sensors (Basel) ; 21(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34640934

RESUMO

Deep learning (DL) plays a very important role in the fault diagnosis of rotating machinery. To enhance the self-learning capacity and improve the intelligent diagnosis accuracy of DL for rotating machinery, a novel hybrid deep learning method (NHDLM) based on Extended Deep Convolutional Neural Networks with Wide First-layer Kernels (EWDCNN) and long short-term memory (LSTM) is proposed for complex environments. First, the EWDCNN method is presented by extending the convolution layer of WDCNN, which can further improve automatic feature extraction. The LSTM then changes the geometric architecture of the EWDCNN to produce a novel hybrid method (NHDLM), which further improves the performance for feature classification. Compared with CNN, WDCNN, and EWDCNN, the proposed NHDLM method has the greatest performance and identification accuracy for the fault diagnosis of rotating machinery.


Assuntos
Aprendizado Profundo , Memória de Longo Prazo , Memória de Curto Prazo , Redes Neurais de Computação
7.
Entropy (Basel) ; 20(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33265836

RESUMO

To reduce the maintenance cost and safeguard machinery operation, remaining useful life (RUL) prediction is very important for long term health monitoring. In this paper, we introduce a novel hybrid method to deal with the RUL prediction for health management. Firstly, the sparse reconstruction algorithm of the optimized Lasso and the Least Square QR-factorization (Lasso-LSQR) is applied to compressed sensing (CS), which can realize the sparse optimization for long term health monitoring data. After the sparse signal is reconstructed, the minimum entropy de-convolution (MED) is used to identify the fault characteristics and to obtain significant fault information from the machinery operation. Health indicators with Skip-over, sample entropy and approximate entropy are then performed to track the degradation of the machinery process. The performance analysis of the Skip-over is superior to other indicators. Finally, Fractal Autoregressive Integrated Moving Average model (FARIMA) is employed to predict the Skip-over using the R/S method. The analysis results evidence that the novel hybrid method yields a good performance, and such method can achieve highly accurate RUL prediction and safeguard machinery operation for long term monitoring.

8.
ISA Trans ; 78: 98-104, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29295740

RESUMO

In the marine systems, engines represent the most important part of ships, the probability of the bearings fault is the highest in the engines, so in the bearing vibration analysis, early weak fault detection is very important for long term monitoring. In this paper, we propose a novel method to solve the early weak fault diagnosis of bearing. Firstly, we should improve the alternating direction method of multipliers (ADMM), structure of the traditional ADMM is changed, and then the improved ADMM is applied to the compressed sensing (CS) theory, which realizes the sparse optimization of bearing signal for a mount of data. After the sparse signal is reconstructed, the calculated signal is restored with the minimum entropy de-convolution (MED) to get clear fault information. Finally we adopt the sample entropy. Morphological mean square amplitude and the root mean square (RMS) to find the early fault diagnosis of bearing respectively, at the same time, we plot the Boxplot comparison chart to find the best of the three indicators. The experimental results prove that the proposed method can effectively identify the early weak fault diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA