Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(8): 1701-1715, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37654626

RESUMO

DNA methylation is a vital early step in carcinogenesis. Most findings of aberrant DNA methylation in head and neck squamous cell carcinomas (HNSCC) are array based with limited coverage and resolution, and mainly explored by human papillomavirus (HPV) status, ignoring the high heterogeneity of this disease. In this study, we performed whole-genome bisulfite sequencing on a well-studied HNSCC cohort (n = 36) and investigated the methylation changes between fine-scaled HNSCC subtypes in relation to genomic instability, repetitive elements, gene expression, and key carcinogenic pathways. The previously observed hypermethylation phenotype in HPV-positive (HPV+) tumors compared with HPV-negative tumors was robustly present in the immune-strong (IMU) HPV+ subtype but absent in the highly keratinized (KRT) HPV+ subtype. Methylation levels of IMU tumors were significantly higher in repetitive elements, and methylation showed a significant correlation with genomic stability, consistent with the IMU subtype having more genomic stability and better prognosis. Expression quantitative trait methylation (cis-eQTM) analysis revealed extensive functionally-relevant differences, and differential methylation pathway analysis recapitulated gene expression pathway differences between subtypes. Consistent with their characteristics, KRT and HPV-negative tumors had high regulatory potential for multiple regulators of keratinocyte differentiation, which positively correlated with an expression-based keratinization score. Together, our findings revealed distinct mechanisms of carcinogenesis between subtypes in HPV+ HNSCC and uncovered previously ignored epigenomic differences and clinical implications, illustrating the importance of fine-scale subtype analysis in cancer. Significance: This study revealed that the previously observed hypermethylation of HPV(+) HNSCC is due solely to the IMU subtype, illustrating the importance of fine-scale subtype analysis in such a heterogeneous disease. Particularly, IMU has significantly higher methylation of transposable elements, which can be tested as a prognosis biomarker in future translational studies.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Metilação de DNA/genética , Infecções por Papillomavirus/complicações , Carcinogênese , Instabilidade Genômica , Papillomavirus Humano , Neoplasias de Cabeça e Pescoço/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA