Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Parasit Vectors ; 15(1): 409, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333822

RESUMO

BACKGROUND: Gastrointestinal nematode (GIN) control is traditionally achieved with the use of anthelmintic drugs, however due to regulations in organic farming and the rise in anthelmintic resistance, alternatives are sought after. A promising alternative is the use of bioactive plant feeding due to the presence of plant secondary metabolites (PSMs) such as proanthocyanidins (PAs). This study focussed on the perennial shrub heather (Ericaceae family), a plant rich in PAs, highly abundant across Europe and with previously demonstrated anthelmintic potential. METHODS: In vitro assays were used to investigate heather's anthelmintic efficacy against egg hatching and larval motility. Heather samples were collected from five European countries across two seasons, and extracts were tested against two GIN species: Teladorsagia circumcincta and Trichostrongylus colubriformis. Polyphenol group-specific ultraperformance liquid chromatography-tandem mass spectrometry analysis was performed to identify relevant polyphenol subgroups present, including the PA concentration and size and ratio of the subunits. Partial least squares analysis was performed to associate efficacy with variation in PSM composition. RESULTS: Heather extracts reduced egg hatching of both GIN species in a dose-dependent manner by up to 100%, while three extracts at the highest concentration (10 mg/ml) reduced larval motility to levels that were not significantly different from dead larvae controls. PAs, particularly the procyanidin type, and flavonol derivatives were associated with anthelmintic activity, and the particular subgroup of polyphenols associated with the efficacy was dependent on the GIN species and life stage. CONCLUSIONS: Our results provide in vitro evidence that heather, a widely available plant often managed as a weed in grazing systems, has anthelmintic properties attributed to various groups of PSMs and could contribute to sustainable GIN control in ruminant production systems across Europe.


Assuntos
Anti-Helmínticos , Ericaceae , Nematoides , Doenças dos Ovinos , Animais , Ovinos , Trichostrongylus , Larva , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Anti-Helmínticos/uso terapêutico , Ericaceae/química , Ostertagia , Fezes , Extratos Vegetais/química , Doenças dos Ovinos/tratamento farmacológico
2.
Springerplus ; 5(1): 1240, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536523

RESUMO

The apple proliferation (AP) disease is spread mostly by two psyllids. Each species plays a predominant role as AP vector that changes regionally. Thus, there is an urgent need to identify the AP vectors in each region where the disease is present. This research aimed at identifying the psyllid community in apple orchards from Asturias (NW Spain) and studying their possible role in AP transmission. Yellow sticky traps were used to monitor psyllid community in five cider-apple orchards during 2 years. 3678 individuals belonging to 22 species were identified. We confirmed the presence of the two known vectors, Cacopsylla picta and Cacopsylla melanoneura, although they occurred in relatively low numbers (2.1 and 0.7 % of total catches, respectively). Most collected psyllids are not supposed to use apple as host, and their occurrence is likely favoured by landscape structure and an insect-friendly management. Phytoplasma detection was performed by squash-capture real-time PCR. The pathogen was detected in six species (Cacopsylla crataegi, Cacopsylla mali, Ctenarytaina spatulata, Ctenarytaina eucalypti and the two known AP vectors). Based on abundance and AP-detection rate C. picta is likely the main species spreading AP in our region. However, the low density of the known vectors does not match the widespread and high tree damage level observed in Asturias. The discovery of other four psyllid species carrying the phytoplasma reveals that our knowledge on the potential vectors is limited and that more research is clearly needed to unravel the role of the psyllid fauna in disease transmission in our orchards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA