Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Reprod ; 38(11): 2187-2195, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37697661

RESUMO

STUDY QUESTION: Is the abundance of certain biochemical compounds in human cumulus cells (CCs) related to oocyte quality? SUMMARY ANSWER: Malonate, 5-oxyproline, and erythronate were positively associated with pregnancy potential. WHAT IS KNOWN ALREADY: CCs are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Mitochondrial DNA content and transcriptional analyses in CC have been shown to provide a poor predictive value of oocyte competence, but the untargeted analysis of biochemical compounds (metabolomics) has been unexplored. STUDY DESIGN, SIZE, DURATION: CCs were obtained from three groups of cumulus-oocyte complexes (COCs) of known developmental potential: oocytes not developing to blastocyst following ICSI (Bl-); oocytes developing to blastocyst but failing to establish pregnancy following embryo transfer (P-); and oocytes developing to blastocyst able to establish a pregnancy (P+). Metabolomics analyses were performed on 12 samples per group, each sample comprising the CC recovered from a single COC. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human CC samples were obtained from IVF treatments. Only unfrozen oocytes and embryos not submitted to preimplantation genetic testing were included in the analysis. Metabolomics analysis was performed by ultra-high performance liquid chromatography-tandem mass spectroscopy. MAIN RESULTS AND THE ROLE OF CHANCE: The analysis identified 98 compounds, five of which were differentially abundant (P < 0.05) between groups: asparagine, proline, and malonate were less abundant in P- compared to Bl-, malonate and 5-oxoproline were less abundant in P- group compared to P+, and erythronate was less abundant in Bl- group compared to P+. No significant association between the abundance of the compounds identified and donor age or BMI was noted. LIMITATIONS, REASONS FOR CAUTION: Data dispersion and the lack of coherence between developmental groups preclude the direct use of metabolic markers in clinical practice, where the uterine environment plays a major role in pregnancy outcome. The abundance of other compounds not detected by the analysis may be associated with oocyte competence. As donors were lean (only two with BMI > 30 kg/m2) and young (<34 years old), a possible effect of obesity or advanced age on the CC metabolome could not be determined. WIDER IMPLICATIONS OF THE FINDINGS: The abundance of malonate, 5-oxyproline, and erythronate in CC was significantly higher in COCs ultimately establishing pregnancy, providing clues on the pathways required for oocyte competence. The untargeted analysis uncovered the presence of compounds that were not expected in CC, such as ß-citrylglutamate and the neurotransmitter N-acetyl-aspartyl-glutamate, which may play roles in chromatin remodeling and signaling, respectively. STUDY FUNDING/COMPETING INTEREST(S): Research was supported by the Industrial Doctorate Project IND2017/BIO-7748 funded by Madrid Region Government. The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Células do Cúmulo , Oócitos , Feminino , Humanos , Gravidez , Adulto , Células do Cúmulo/metabolismo , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacologia , Oócitos/metabolismo , Oogênese , Malonatos/metabolismo , Malonatos/farmacologia
2.
Hum Reprod Open ; 2022(3): hoac029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864920

RESUMO

STUDY QUESTION: Is relative mitochondrial DNA (mtDNA) content in cumulus cells (CCs) related to embryo developmental competence in humans and/or the bovine model? SUMMARY ANSWER: mtDNA content in CCs provides a poor predictive value of oocyte developmental potential, both in vitro and following embryo transfer. WHAT IS KNOWN ALREADY: CCs are closely connected to the oocyte through transzonal projections, serving essential metabolic functions during folliculogenesis. These oocyte-supporting cells are removed and discarded prior to ICSI, thereby providing interesting biological material on which to perform molecular analyses designed to identify markers that predict oocyte developmental competence. Previous studies have positively associated oocyte mtDNA content with developmental potential in animal models and women. However, it remains debatable whether mtDNA content in CCs could be used as a proxy to infer oocyte developmental potential. STUDY DESIGN SIZE DURATION: mtDNA content was analyzed in CCs obtained from 109 human oocytes unable to develop to blastocyst, able to develop to blastocyst but failing to establish pregnancy or able to develop to blastocyst and to establish pregnancy. mtDNA analysis was also performed on bovine cumulus samples collected from 120 oocytes unable to cleave, oocytes developing into cleaved embryos but arresting development prior to the blastocyst stage or oocytes developing to blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS: Human CCs samples were obtained from women undergoing IVF. Only unfrozen oocytes and embryos not submitted to preimplantation genetic testing were included in the analysis. Bovine samples were obtained from slaughtered cattle and individually matured, fertilized and cultured in vitro. Relative mtDNA was assessed by quantitative PCR analysis. MAIN RESULTS AND THE ROLE OF CHANCE: mtDNA content in human and bovine CCs did not differ according to the developmental potential of their enclosed oocyte. Moreover, mtDNA content in bovine oocytes did not correlate with that of their corresponding CCs. LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: The lack of correlation found between mtDNA content in human CCs and oocytes was also assessed in bovine samples. Although bovine folliculogenesis, mono-ovulatory ovulation and early embryo development exhibit considerable similarities with that of humans, they may not be fully comparable. WIDER IMPLICATIONS OF THE FINDINGS: The use of molecular markers for oocyte developmental potential in CCs could be used to enhance success rates following single embryo transfer. However, our data indicate that mtDNA in CCs is not a good proxy for oocyte quality. STUDY FUNDING/COMPETING INTERESTS: This research was supported by the Industrial Doctorate Project IND2017/BIO-7748 funded by the Madrid Region Government. The authors declare no competing interests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA