Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436559

RESUMO

A wide range of approaches can be used to detect micro RNA (miRNA)-target gene pairs (mTPs) from expression data, differing in the ways the gene and miRNA expression profiles are calculated, combined and correlated. However, there is no clear consensus on which is the best approach across all datasets. Here, we have implemented multiple strategies and applied them to three distinct rare disease datasets that comprise smallRNA-Seq and RNA-Seq data obtained from the same samples, obtaining mTPs related to the disease pathology. All datasets were preprocessed using a standardized, freely available computational workflow, DEG_workflow. This workflow includes coRmiT, a method to compare multiple strategies for mTP detection. We used it to investigate the overlap of the detected mTPs with predicted and validated mTPs from 11 different databases. Results show that there is no clear best strategy for mTP detection applicable to all situations. We therefore propose the integration of the results of the different strategies by selecting the one with the highest odds ratio for each miRNA, as the optimal way to integrate the results. We applied this selection-integration method to the datasets and showed it to be robust to changes in the predicted and validated mTP databases. Our findings have important implications for miRNA analysis. coRmiT is implemented as part of the ExpHunterSuite Bioconductor package available from https://bioconductor.org/packages/ExpHunterSuite.


Assuntos
MicroRNAs , Consenso , Bases de Dados Factuais , MicroRNAs/genética , Razão de Chances , RNA-Seq
2.
BMC Bioinformatics ; 23(1): 43, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033002

RESUMO

BACKGROUND: Protein function prediction remains a key challenge. Domain composition affects protein function. Here we present DomFun, a Ruby gem that uses associations between protein domains and functions, calculated using multiple indices based on tripartite network analysis. These domain-function associations are combined at the protein level, to generate protein-function predictions. RESULTS: We analysed 16 tripartite networks connecting homologous superfamily and FunFam domains from CATH-Gene3D with functional annotations from the three Gene Ontology (GO) sub-ontologies, KEGG, and Reactome. We validated the results using the CAFA 3 benchmark platform for GO annotation, finding that out of the multiple association metrics and domain datasets tested, Simpson index for FunFam domain-function associations combined with Stouffer's method leads to the best performance in almost all scenarios. We also found that using FunFams led to better performance than superfamilies, and better results were found for GO molecular function compared to GO biological process terms. DomFun performed as well as the highest-performing method in certain CAFA 3 evaluation procedures in terms of [Formula: see text] and [Formula: see text] We also implemented our own benchmark procedure, Pathway Prediction Performance (PPP), which can be used to validate function prediction for additional annotations sources, such as KEGG and Reactome. Using PPP, we found similar results to those found with CAFA 3 for GO, moreover we found good performance for the other annotation sources. As with CAFA 3, Simpson index with Stouffer's method led to the top performance in almost all scenarios. CONCLUSIONS: DomFun shows competitive performance with other methods evaluated in CAFA 3 when predicting proteins function with GO, although results vary depending on the evaluation procedure. Through our own benchmark procedure, PPP, we have shown it can also make accurate predictions for KEGG and Reactome. It performs best when using FunFams, combining Simpson index derived domain-function associations using Stouffer's method. The tool has been implemented so that it can be easily adapted to incorporate other protein features, such as domain data from other sources, amino acid k-mers and motifs. The DomFun Ruby gem is available from https://rubygems.org/gems/DomFun . Code maintained at https://github.com/ElenaRojano/DomFun . Validation procedure scripts can be found at https://github.com/ElenaRojano/DomFun_project .


Assuntos
Biologia Computacional , Proteínas , Bases de Dados de Proteínas , Ontologia Genética , Anotação de Sequência Molecular , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA