Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137907

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with no cure nowadays; there is no treatment either to prevent or to stop its progression. In vitro studies suggested that tert-butyl-(4-hydroxy-3-((3-(2-methylpiperidin-yl)propyl)carbamoyl)phenyl) carbamate named the M4 compound can act as both ß-secretase and an acetylcholinesterase inhibitor, preventing the amyloid beta peptide (Aß) aggregation and the formation of fibrils (fAß) from Aß1-42. This work first aimed to assess in in vitro studies to see whether the death of astrocyte cells promoted by Aß1-42 could be prevented. Second, our work investigated the ability of the M4 compound to inhibit amyloidogenesis using an in vivo model after scopolamine administration. The results showed that M4 possesses a moderate protective effect in astrocytes against Aß1-42 due to a reduction in the TNF-α and free radicals observed in cell cultures. In the in vivo studies, however, no significant effect of M4 was observed in comparison with a galantamine model employed in rats, in which case this outcome was attributed to the bioavailability of M4 in the brain of the rats.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Carbamatos , Fármacos Neuroprotetores , Fragmentos de Peptídeos/metabolismo , Escopolamina/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Animais , Astrócitos/patologia , Carbamatos/química , Carbamatos/farmacologia , Modelos Animais de Doenças , Humanos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Ratos , Escopolamina/farmacologia
2.
PLoS One ; 17(6): e0269129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657793

RESUMO

The preset neurodegenerations in Alzheimer disease (AD) are due to several mechanisms such as amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, neurofibrillary tangles, cholinergic dysfunction, among others. The aim of this work was to develop multitarget molecules for the treatment of AD. Therefore, a family of 64 molecules was designed based on ligand structure pharmacophores able to inhibit the activity of beta secretase (BACE1) and acetylcholinesterase (AChE) as well as to avoid amyloid beta (Aß1-42) oligomerization. The backbone of designed molecules consisted of a trisubstituted aromatic ring, one of the substituents was a heterocyclic amine (piperidine, morpholine, pyrrolidine or N-methyl pyrrolidine) separated from the aromatic system by three carbon atoms. The set of compounds was screened in silico employing molecular docking calculations and chemoinformatic analyses. Based on Gibbs free energy of binding, binding mode and in silico predicted toxicity results, three of the best candidates were selected, synthesized, and evaluated in vitro; F3S4-m, F2S4-m, and F2S4-p. All three compounds prevented Aß1-42 aggregation (F3S4-m in 30.5%, F2S4-p in 42.1%, and F2S4-m in 60.9%). Additionally, inhibitory activity against AChE (ki 0.40 µM and 0.19 µM) and BACE1 (IC50 15.97 µM and 8.38 µM) was also observed for compounds F2S4-m and F3S4-m, respectively. Despite the BACE IC50 results demonstrated that all compounds are very less potent respect to peptidomimetic inhibitor (PI-IV IC50 3.20 nM), we can still say that F3S4-m is capable to inhibit AChE and BACE1.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Aminas/química , Aminas/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Inibidores da Colinesterase/química , Humanos , Simulação de Acoplamento Molecular , Pirrolidinas , Relação Estrutura-Atividade
3.
Mol Neurobiol ; 57(9): 3979-3988, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32638218

RESUMO

The increase of amyloid beta (Aß) release and hyperphosphorylation of Tau protein represents the main events related to Alzheimer's disease (AD). Furthermore, the sporadic type represents the most common form of AD. Therefore, the establishment of a non-transgenic animal model that resembles the characteristics of the disease is of particular importance. Scopolamine has been linked to increases in both Aß production and oxidative stress in rat and mice brains. Thus, the purpose of the present work was to identify changes in biomarkers that are related to AD after chronic administration of scopolamine (2 mg/kg i.p., during 6 and 12 weeks) to male Wistar rats. The results showed increased Aß deposition at rat hippocampus which could be due to an increase of ß-site amyloid-ß-protein precursor cleaving enzyme 1 (BACE1) expression and activity. These findings could be related to the increase of glycogen synthase kinase 3 phosphorylated (GSK3ßP9) expression. Finally, the establishment of a state of oxidative stress in groups treated with scopolamine was demonstrated by an increase in free radical content and MDA levels. The present study facilitates our understanding of the changes that occur in biomolecules related to AD in Wistar rats after the chronic administration of scopolamine.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/patologia , Estresse Oxidativo , Escopolamina/administração & dosagem , Peptídeos beta-Amiloides/sangue , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Masculino , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos Wistar
4.
J Mol Neurosci ; 70(2): 180-193, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31768942

RESUMO

Alzheimer's disease (AD) is one of the most complicated neurodegenerative diseases, and several hypotheses have been associated with its development and progression, such as those involving glucose hypometabolism, the cholinergic system, calcium imbalance, inflammation, oxidative imbalance, microtubule instability, and the amyloid cascade, several of which are related to oxidative stress (free radical generation), which contributes to neuronal death. Therefore, several efforts have been made to establish a sporadic AD model that takes into account these hypotheses. One model that replicates the increase in amyloid beta (Aß) and oxidative stress in vivo is the scopolamine model. In the present work, the chronic administration (6 weeks) of scopolamine was used to analyze the neuroprotective effects of apocynin and galantamine. The results showed that scopolamine induced cognitive impairment, which was evaluated 24 h after the final dose was administered. In addition, after scopolamine administration, the Aß and superoxide anion levels were increased, and NADPH oxidase 2 (NOX2), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa B (NFkB) genes were overexpressed. These effects were not observed when either apocynin or galantamine was administered during the last 3 weeks of scopolamine treatment, and although the results from both molecules were related to lower Aß production and, consequently, lower superoxide anion production, they were likely realized through different pathways. That is, both apocynin and galantamine diminished NADPH oxidase expression, but their effects on transcription factor expression differed. Moreover, experiments in silico showed that galantamine did not interact with the active site of beta secretase, whereas diapocynin, an apocynin metabolite, interacted with the beta-site APP-cleaving enzyme (BACE1) at the catalytic site.


Assuntos
Acetofenonas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Galantamina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acetofenonas/farmacologia , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Cognição , Galantamina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos , Ratos Wistar , Escopolamina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA