Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 147(22): 5121-5129, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36222111

RESUMO

In this work, the electrochemical response of different morphologies (shapes) and dimensions of additively manufactured (3D-printing) carbon black (CB)/poly-lactic acid (PLA) electrodes are reported. The working electrodes (WE) are printed using standard non-conductive PLA based filament for the housing and commercial Protopasta (carbon black/PLA) filament for the electrode and connection parts. Discs, squares, equilateral triangles and six-point stars with varying working electrode (WE) widths from 2 to 10 mm are evaluated herein towards the well-known near-ideal outer sphere redox probe hexaamineruthenium(III) chloride (RuHex). The results obtained show that triangular and squared electrodes exhibit a faster heterogeneous electron transfer (HET) rate constant (k°) than those of discs and stars, the latter being the slowest one. The results reported here also show a trend between the WE dimension and the reversibility of the electrochemical reaction, which decreases as the WE size increases. It is also observed that the ratio of the geometrical and electroactive area (%realarea) decreases as the overall WE size increases. On the other hand, these four WE shapes were applied toward the well-known and benchmarking detection of ascorbic acid (AA), uric acid (UA), ß-nicotinamide adenine dinucleotide (NADH) and dopamine (DA). Moreover, electroanalytical detection of real acetaminophen (ACOP) samples is also showcased. The different designs for the working electrode proposed in this manuscript are easily changed to any other desired shapes thanks to the additive manufacturing methodology, these four shapes being just an example of what additive manufacturing can offer to experimentalists and to electrochemists in particular. Additive manufacturing is shown here as a versatile and rapid prototyping tool for the production of novel electrochemical sensing platforms, with scope for this work to be able to impact a wide variety of electroanalytical applications.


Assuntos
Dopamina , Fuligem , Eletrodos , Dopamina/análise , Ácido Úrico , Poliésteres , Técnicas Eletroquímicas
2.
Sensors (Basel) ; 22(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36502222

RESUMO

Changing the connection length of an additively manufactured electrode (AME) has a significant impact on the electrochemical and electroanalytical response of the system. In the literature, many electrochemical platforms have been produced using additive manufacturing with great variations in how the AME itself is described. It is seen that when measuring the near-ideal outer-sphere redox probe hexaamineruthenium (III) chloride (RuHex), decreasing the AME connection length enhances the heterogeneous electrochemical transfer (HET) rate constant (k0) for the system. At slow scan rates, there is a clear change in the peak-to-peak separation (ΔEp) observed in the RuHex voltammograms, with the ΔEp shifting from 118 ± 5 mV to 291 ± 27 mV for the 10 and 100 mm electrodes, respectively. For the electroanalytical determination of dopamine, no significant difference is noticed at low concentrations between 10- and 100-mm connection length AMEs. However, at concentrations of 1 mM dopamine, the peak oxidation is shifted to significantly higher potentials as the AME connection length is increased, with a shift of 150 mV measured. It is recommended that in future work, all AME dimensions, not just the working electrode head size, is reported along with the resistance measured through electrochemical impedance spectroscopy to allow for appropriate comparisons with other reports in the literature. To produce the best additively manufactured electrochemical systems in the future, researchers should endeavor to use the shortest AME connection lengths that are viable for their designs.


Assuntos
Dopamina , Eletrodos , Oxirredução
3.
Anal Chem ; 93(14): 5931-5938, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33793190

RESUMO

This paper reports the detection of the inflammatory and sepsis-related biomarker, interleukin-6 (IL-6), in human blood plasma using functionalized screen-printed electrodes (SPEs) in conjunction with a thermal detection methodology, termed heat-transfer method (HTM). SPEs are functionalized with antibodies specific for IL-6 through electrodeposition of a diazonium linking group and N'-ethylcarbodiimide hydrochloride (EDC) coupling, which was tracked through the use of cyclic voltammetry and Raman spectroscopy. The functionalized SPEs are mounted inside an additively manufactured flow cell and connected to the HTM device. We demonstrate the ability to detect IL-6 at clinically relevant concentrations in PBS buffer (pH = 7.4) with no significant interference from the similarly sized sepsis-related biomarker procalcitonin (PCT). The limit of detection (3σ) of the system is calculated to correspond to 3.4 ± 0.2 pg mL-1 with a working range spanning the physiologically relevant concentration levels in both healthy individuals and patients with sepsis, indicating the sensitivity of the sensor is suitable for the application. Further experiments helped provide a proof-of-application through the detection of IL-6 in blood plasma with no significant interference observed from PCT or the constituents of the medium. Due to the selectivity, sensitivity, straightforward operation, and low cost of production, this sensor platform has the potential for use as a traffic light sensor for the multidetection of inflammatory biomarkers for the diagnosis of sepsis and other conditions in which the rapid testing of blood biomarkers has vital clinical application.


Assuntos
Interleucina-6/sangue , Sepse , Eletrodos , Humanos , Plasma , Pró-Calcitonina , Sepse/diagnóstico
4.
Anal Chem ; 93(49): 16481-16488, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34854668

RESUMO

Screen-printed electrodes (SPEs) are ubiquitous within the field of electrochemistry and are commonplace within the arsenal of electrochemists. Their popularity stems from their reproducibility, versatility, and extremely low-cost production, allowing their utilization as single-shot electrodes and thus removing the need for tedious electrode pretreatments. Many SPE studies have explored changing the working electrode composition and/or size to benefit the researcher's specific applications. In this paper, we explore a critical parameter of SPEs that is often overlooked; namely, we explore changing the length of the SPE connections. We provide evidence of resistance changes through altering the connection length to the working electrode through theoretical calculations, multimeter measurements, and electrochemical impedance spectroscopy (EIS). We demonstrate that changing the physical length of SPE connections gives rise to more accurate heterogeneous electrode kinetics, which cannot be overcome simply through IR compensation. Significant improvements are observed when utilized as the basis of electrochemical sensing platforms for sodium nitrite, ß-nicotinamide adenine dinucleotide (NADH), and lead (II). This work has a significant impact upon the field of SPEs and highlights the need for researchers to characterize and define their specific electrode performance. Without such fundamental characterization as the length and resistance of the SPE used, direct comparisons between two different systems for similar applications are obsolete. We therefore suggest that, when using SPEs in the future, experimentalists report the length of the working electrode connection alongside the measured resistance (multimeter or EIS) to facilitate this standardization across the field.


Assuntos
Reprodutibilidade dos Testes , Eletroquímica
5.
Anal Bioanal Chem ; 413(3): 663-672, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33284404

RESUMO

2D hexagonal boron nitride (2D-hBN) is a lesser utilised material than other 2D counterparts in electrochemistry due to initial reports of it being non-conductive. As we will demonstrate in this review, this common misconception is being challenged, and researchers are starting to utilise 2D-hBN in the field of electrochemistry, particularly as the basis of electroanalytical sensing platforms. In this critical review, we overview the use of 2D-hBN as an electroanalytical sensing platform summarising recent developments and trends and highlight future developments of this interesting, often overlooked, 2D material.

6.
ACS Meas Sci Au ; 3(3): 217-225, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360039

RESUMO

The development and increase in the number of crops recently have led to the requirement for greater efficiency in world food production and greater consumption of pesticides. In this context, the widespread use of pesticides has affected the decrease in the population of pollinating insects and has caused food contamination. Therefore, simple, low-cost, and quick analytical methods can be interesting alternatives for checking the quality of foods such as honey. In this work, we propose a new additively manufactured (3D-printed) device inspired by a honeycomb cell, with 6 working electrodes for the direct electrochemical analysis of methyl parathion by reduction process monitoring in food and environmental samples. Under optimized parameters, the proposed sensor presented a linear range between 0.85 and 19.6 µmol L-1, with a limit of detection of 0.20 µmol L-1. The sensors were successfully applied in honey and tap water samples by using the standard addition method. The proposed honeycomb cell made of polylactic acid and commercial conductive filament is easy to construct, and there is no need for chemical treatments to be used. These devices based on 6 working electrodes array are versatile platforms for rapid, highly repeatable analysis in food and environment, capable of performing detection in low concentrations.

7.
ACS Sustain Chem Eng ; 11(24): 9183-9193, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37351461

RESUMO

Recycling used mixed material additively manufactured electroanalytical sensors into new 3D-printing filaments (both conductive and non-conductive) for the production of new sensors is reported herein. Additively manufactured (3D-printed) sensing platforms were transformed into a non-conductive filament for fused filament fabrication through four different methodologies (granulation, ball-milling, solvent mixing, and thermal mixing) with thermal mixing producing the best quality filament, as evidenced by the improved dispersion of fillers throughout the composite. Utilizing this thermal mixing methodology, and without supplementation with the virgin polymer, the filament was able to be cycled twice before failure. This was then used to process old sensors into an electrically conductive filament through the addition of carbon black into the thermal mixing process. Both recycled filaments (conductive and non-conductive) were utilized to produce a new electroanalytical sensing platform, which was tested for the cell's original application of acetaminophen determination. The fully recycled cell matched the electrochemical and electroanalytical performance of the original sensing platform, achieving a sensitivity of 22.4 ± 0.2 µA µM-1, a limit of detection of 3.2 ± 0.8 µM, and a recovery value of 95 ± 5% when tested using a real pharmaceutical sample. This study represents a paradigm shift in how sustainability and recycling can be utilized within additively manufactured electrochemistry toward promoting circular economy electrochemistry.

8.
Biosens Bioelectron ; 228: 115220, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924686

RESUMO

This manuscript presents the design and facile production of screen-printed arrays (SPAs) for the internally validated determination of raised levels of serum procalcitonin (PCT). The screen-printing methodology produced SPAs with six individual working electrodes that exhibit an inter-array reproducibility of 3.64% and 5.51% for the electrochemically active surface area and heterogenous electrochemical rate constant respectively. The SPAs were modified with antibodies specific for the detection of PCT through a facile methodology, where each stage simply uses droplets incubated on the surface, allowing for their mass-production. This platform was used for the detection of PCT, achieving a linear dynamic range between 1 and 10 ng mL-1 with a sensor sensitivity of 1.35 × 10-10 NIC%/ng mL-1. The SPA produced an intra- and inter-day %RSD of 4.00 and 5.05%, with a material cost of £1.14. Internally validated human serum results (3 sample measurements, 3 control) for raised levels of PCT (>2 ng mL-1) were obtained, with no interference effects seen from CRP and IL-6. This SPA platform has the potential to offer clinicians vital information to rapidly begin treatment for "query sepsis" patients while awaiting results from more lengthy remote laboratory testing methods. Analytical ranges tested make this an ideal approach for rapid testing in specific patient populations (such as neonates or critically ill patients) in which PCT ranges are inherently wider. Due to the facile modification methods, we predict this could be used for various analytes on a single array, or the array increased further to maintain the internal validation of the system.


Assuntos
Técnicas Biossensoriais , Sepse , Recém-Nascido , Humanos , Pró-Calcitonina , Reprodutibilidade dos Testes , Sepse/diagnóstico , Anticorpos
9.
Chem Commun (Camb) ; 56(67): 9612-9615, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32776054

RESUMO

The reactivity of graphene at its boundary region has been imaged using non-linear spectroscopy to address the controversy whether the terraces of graphene or its edges are more reactive. Graphene was functionalised with phenyl groups, and we subsequently scanned our vibrational sum-frequency generation setup from the functionalised graphene terraces across the edges. A greater phenyl signal is clearly observed at the edges, showing evidence of increased reactivity in the boundary region. We estimate an upper limit of 1 mm for the width of the CVD graphene boundary region.

10.
Nanoscale Adv ; 2(11): 5319-5328, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36132042

RESUMO

The electrochemical response of different morphologies (microstructures) of vertically aligned graphene (VG) configurations is reported. Electrochemical properties are analysed using the outer-sphere redox probes Ru(NH3)6 2+/3+ (RuHex) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), with performances de-convoluted via accompanying physicochemical characterisation (Raman, TEM, SEM, AFM and XPS). The VG electrodes are fabricated using an electron cyclotron resonance chemical vapour deposition (ECR-CVD) methodology, creating vertical graphene with a range of differing heights, spacing and edge plane like-sites/defects (supported upon underlying SiO2/Si). We correlate the electrochemical reactivity/response of these novel VG configurations with the level of edge plane sites (%-edge) comprising their structure and calculate corresponding heterogeneous electron transfer (HET) rates, k 0. Taller VG structures with more condensed layer stacking (hence a larger global coverage of exposed edge plane sites) are shown to exhibit improved HET kinetics, supporting the claims that edge plane sites are the predominant source of electron transfer in carbon materials. A measured k 0 eff of ca. 4.00 × 10-3 cm s-1 (corresponding to an exposed surface coverage of active edge plane like-sites/defects (% θ edge) of 1.00%) was evident for the tallest and most closely stacked VG sample, with the inverse case true, where a VG electrode possessing large inter-aligned-graphene spacing and small flake heights exhibited only 0.08% of % θ edge and a k 0 eff value one order of magnitude slower at ca. 3.05 × 10-4 cm s-1. Control experiments are provided with conventional CVD (horizontal) grown graphene and the edge plane of highly ordered pyrolytic graphite (EPPG of HOPG), demonstrating that the novel VG electrodes exhibit ca. 3× faster k 0 than horizontal CVD graphene. EPPG exhibited the fastest HET kinetics, exhibiting ca. 2× larger k 0 than the best VG. These results are of significance to those working in the field of 2D-carbon electrochemistry and materials scientists, providing evidence that the macroscale electrochemical response of carbon-based electrodes is dependent on the edge plane content and showing that a range of structural configurations can be employed for tailored properties and applications.

11.
Nanoscale Adv ; 2(1): 264-273, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36133988

RESUMO

Monolayer hexagonal-boron nitride films (2D-hBN) are typically reported within the literature to be electrochemically inactive due to their considerable band gap (ca. 5.2-5.8 eV). It is demonstrated herein that introducing physical linear defects (PLDs) upon the basal plane surface of 2D-hBN gives rise to electrochemically useful signatures. The reason for this transformation from insulator to semiconductor (inferred from physicochemical and computational characterisation) is likely due to full hydrogenation and oxygen passivation of the boron and/or nitrogen at edge sites. This results in a decrease in the band gap (from ca. 6.11 to 2.36/2.84 eV; theoretical calculated values, for the fully hydrogenated oxygen passivation at the N or B respectively). The 2D-hBN films are shown to be tailored through the introduction of PLDs, with the electrochemical behaviour dependent upon the surface coverage of edge plane-sites/defects, which is correlated with electrochemical performance towards redox probes (hexaammineruthenium(iii) chloride and Fe2+/3+) and the hydrogen evolution reaction. This manuscript de-convolutes, for the first time, the fundamental electron transfer properties of 2D-hBN, demonstrating that through implementation of PLDs, one can beneficially tailor the electrochemical properties of this nanomaterial.

12.
Nanoscale ; 12(35): 18214-18224, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32856624

RESUMO

We present the fabrication of platinum (Pt0) nanoparticle (ca. 3 nm average diameter) decorated vertically aligned graphene (VG) screen-printed electrodes (Pt/VG-SPE) and explore their physicochemical characteristics and electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media (0.5 M H2SO4). The Pt/VG-SPEs exhibit remarkable HER activity with an overpotential (recorded at -10 mA cm-2) and Tafel value of 47 mV (vs. RHE) and 27 mV dec-1. These values demonstrate the Pt/VG-SPEs as significantly more electrocatalytic than a bare/unmodified VG-SPE (789 mV (vs. RHE) and 97 mV dec-1). The uniform coverage of Pt0 nanoparticles (ca. 3 nm) upon the VG-SPE support results in a low loading of Pt0 nanoparticles (ca. 4 µg cm-2), yet yields comparable HER activity to optimal Pt based catalysts reported in the literature, with the advantages of being comparatively cheap, highly reproducible and tailorable platforms for HER catalysis. In order to test any potential dissolution of Pt0 from the Pt/VG-SPE surface, which is a key consideration for any HER catalyst, we additively manufactured (AM) a bespoke electrochemical flow cell that allowed for the electrolyte to be collected at regular intervals and analysed via inductively coupled plasma optical emission spectroscopy (ICP-OES). The AM electrochemical cell can be rapidly tailored to a plethora of geometries making it compatible with any size/shape of electrochemical platform. This work presents a novel and highly competitive HER platform and a novel AM technique for exploring the extent of Pt0 nanoparticle dissolution upon the electrode surface, making it an essential study for those seeking to test the stability/catalyst discharge of their given electrochemical platforms.

13.
Sci Rep ; 9(1): 15961, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685906

RESUMO

Mono-, few-, and multilayer graphene is explored towards the electrochemical Hydrogen Evolution Reaction (HER). Careful physicochemical characterisation is undertaken during electrochemical perturbation revealing that the integrity of graphene is structurally compromised. Electrochemical perturbation, in the form of electrochemical potential scanning (linear sweep voltammetry), as induced when exploring the HER using monolayer graphene, creates defects upon the basal plane surface that increases the coverage of edge plane sites/defects resulting in an increase in the electrochemical reversibility of the HER process. This process of improved HER performance occurs up to a threshold, where substantial break-up of the basal sheet occurs, after which the electrochemical response decreases; this is due to the destruction of the sheet integrity and lack of electrical conductive pathways. Importantly, the severity of these changes is structurally dependent on the graphene variant utilised. This work indicates that multilayer graphene has more potential as an electrochemical platform for the HER, rather than that of mono- and few-layer graphene. There is huge potential for this knowledge to be usefully exploited within the energy sector and beyond.

14.
Sci Rep ; 9(1): 12814, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492903

RESUMO

The origin of electron transfer at Chemical Vapour Deposition (CVD) grown monolayer graphene using a polymer-free transfer methodology is explored through the selective electrodeposition of Molybdenum (di)oxide (MoO2). The electrochemical decoration of CVD monolayer graphene with MoO2 is shown to originate from the edge plane like- sites/defects. Edge plane decoration of MoO2 nanowires upon monolayer graphene is observed via electrochemical deposition over short time periods only (ca. -0.6 V for 1 second (vs. Ag/AgCl)). At more electrochemically negative potentials (ca. -1.0 V) or longer deposition times, a large MoO2 film is created/deposited on the graphene sheet, originating and expanding from the original nucleation points at edge plane like- sites/defects/wrinkles. Nanowire fabrication along the edge plane like- sites/defects of graphene is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Raman Spectroscopy. Monitoring the electrochemical response towards [Ru(NH3)6]3+/2+ and comparing the heterogeneous electron transfer (HET) kinetics at CVD grown monolayer graphene prior and post nanowire fabrication reveals key understandings into the fundamental electrochemical properties of carbon materials. The HET kinetics ([Formula: see text]) at MoO2 nanowire decorated monolayer graphene sheets, when edge plane like- sites/defects have been coated/blocked with MoO2, are significantly reduced in comparison to the unmodified graphene alternative. Interestingly, MoO2 nucleation originates on the edge plane like- sites/defects of the graphene sheets, where the basal plane sites remain unaltered until the available edge plane like- sites/defects have been fully utilised; after which MoO2 deposition propagates towards and onto the basal planes, eventually covering the entire surface of the monolayer graphene surface. In such instances, there is no longer an observable electrochemical response. This work demonstrates the distinct electron transfer properties of edge and basal plane sites on CVD grown monolayer graphene, inferring favourable electrochemical reactivity at edge plane like- sites/defects and clarifying the origin of graphene electro-activity.

15.
Biosensors (Basel) ; 8(2)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890706

RESUMO

Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA