Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Funct Mater ; 31(22)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36213489

RESUMO

Advanced wound scaffolds that integrate active substances to treat chronic wounds have gained significant recent attention. While wound scaffolds and advanced functionalities have previously been incorporated into one medical device, the wirelessly triggered release of active substances has remained the focus of many research endeavors. To combine multiple functions including light-triggered activation, anti-septic, angiogenic, and moisturizing properties, we have developed a 3D printed hydrogel patch encapsulating vascular endothelial growth factor (VEGF) decorated with photoactive and antibacterial tetrapodal zinc oxide (t-ZnO) microparticles. To achieve the smart release of VEGF, t-ZnO was modified by chemical treatment and activated through UV/visible light exposure. This process would also make the surface rough and improve protein adhesion. The elastic modulus and degradation behavior of the composite hydrogels, which must match the wound healing process, were adjusted by changing t-ZnO concentrations. The t-ZnO-laden composite hydrogels can be printed with any desired micropattern to potentially create a modular elution of various growth factors. The VEGF decorated t-ZnO-laden hydrogel patches showed low cytotoxicity and improved angiogenic properties while maintaining antibacterial functions in vitro. In vivo tests showed promising results for the printed wound patches, with less immunogenicity and enhanced wound healing.

2.
Biomaterials ; 300: 122179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315386

RESUMO

Oxygenating biomaterials can alleviate anoxic stress, stimulate vascularization, and improve engraftment of cellularized implants. However, the effects of oxygen-generating materials on tissue formation have remained largely unknown. Here, we investigate the impact of calcium peroxide (CPO)-based oxygen-generating microparticles (OMPs) on the osteogenic fate of human mesenchymal stem cells (hMSCs) under a severely oxygen deficient microenvironment. To this end, CPO is microencapsulated in polycaprolactone to generate OMPs with prolonged oxygen release. Gelatin methacryloyl (GelMA) hydrogels containing osteogenesis-inducing silicate nanoparticles (SNP hydrogels), OMPs (OMP hydrogels), or both SNP and OMP (SNP/OMP hydrogels) are engineered to comparatively study their effect on the osteogenic fate of hMSCs. OMP hydrogels associate with improved osteogenic differentiation under both normoxic and anoxic conditions. Bulk mRNAseq analyses suggest that OMP hydrogels under anoxia regulate osteogenic differentiation pathways more strongly than SNP/OMP or SNP hydrogels under either anoxia or normoxia. Subcutaneous implantations reveal a stronger host cell invasion in SNP hydrogels, resulting in increased vasculogenesis. Furthermore, time-dependent expression of different osteogenic factors reveals progressive differentiation of hMSCs in OMP, SNP, and SNP/OMP hydrogels. Our work demonstrates that endowing hydrogels with OMPs can induce, improve, and steer the formation of functional engineered living tissues, which holds potential for numerous biomedical applications, including tissue regeneration and organ replacement therapy.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Diferenciação Celular , Engenharia Tecidual/métodos , Hidrogéis/farmacologia , Hipóxia/metabolismo , Oxigênio/metabolismo
3.
ACS Appl Mater Interfaces ; 14(46): 51602-51618, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346873

RESUMO

Recapitulating inherent heterogeneity and complex microarchitectures within confined print volumes for developing implantable constructs that could maintain their structure in vivo has remained challenging. Here, we present a combinational multimaterial and embedded bioprinting approach to fabricate complex tissue constructs that can be implanted postprinting and retain their three-dimensional (3D) shape in vivo. The microfluidics-based single nozzle printhead with computer-controlled pneumatic pressure valves enables laminar flow-based voxelation of up to seven individual bioinks with rapid switching between various bioinks that can solve alignment issues generated during switching multiple nozzles. To improve the spatial organization of various bioinks, printing fidelity with the z-direction, and printing speed, self-healing and biodegradable colloidal gels as support baths are introduced to build complex geometries. Furthermore, the colloidal gels provide suitable microenvironments like native extracellular matrices (ECMs) for achieving cell growths and fast host cell invasion via interconnected microporous networks in vitro and in vivo. Multicompartment microfibers (i.e., solid, core-shell, or donut shape), composed of two different bioink fractions with various lengths or their intravolume space filled by two, four, and six bioink fractions, are successfully printed in the ECM-like support bath. We also print various acellular complex geometries such as pyramids, spirals, and perfusable branched/linear vessels. Successful fabrication of vascularized liver and skeletal muscle tissue constructs show albumin secretion and bundled muscle mimic fibers, respectively. The interconnected microporous networks of colloidal gels result in maintaining printed complex geometries while enabling rapid cell infiltration, in vivo.


Assuntos
Bioimpressão , Bioimpressão/métodos , Engenharia Tecidual/métodos , Impressão Tridimensional , Matriz Extracelular/química , Géis/química , Alicerces Teciduais , Hidrogéis/química
4.
Biofabrication ; 13(3)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962404

RESUMO

Engineering three-dimensional (3D) sensible tissue constructs, along with the complex microarchitecture wiring of the sensory nervous system, has been an ongoing challenge in the tissue engineering field. By combining 3D bioprinting and human pluripotent stem cell (hPSC) technologies, sensible tissue constructs could be engineered in a rapid, precise, and controllable manner to replicate 3D microarchitectures and mechanosensory functionalities of the native sensory tissue (e.g. response to external stimuli). Here, we introduce a biofabrication approach to create complex 3D microarchitecture wirings. We develop an hPSC-sensory neuron (SN) laden bioink using highly purified and functional SN populations to 3D bioprint microarchitecture wirings that demonstrate responsiveness to warm/cold sense-inducing chemicals and mechanical stress. Specifically, we tailor a conventional differentiation strategy to our purification method by utilizing p75 cell surface marker and DAPT treatment along with neuronal growth factors in order to selectively differentiate neural crest cells into SNs. To create spatial resolution in 3D architectures and grow SNs in custom patterns and directions, an induced pluripotent stem cell (iPSC)-SN-laden gelatin bioink was printed on laminin-coated substrates using extrusion-based bioprinting technique. Then the printed constructs were covered with a collagen matrix that guided SNs growing in the printed micropattern. Using a sacrificial bioprinting technique, the iPSC-SNs were seeded into the hollow microchannels created by sacrificial gelatin ink printed in the gelatin methacryloyl supporting bath, thereby demonstrating controllability over axon guidance in curved lines up to several tens of centimeters in length on 2D substrates and in straight microchannels in 3D matrices. Therefore, this biofabrication approach could be amenable to incorporate sensible SN networks into the engineered skin equivalents, regenerative skin implants, and augmented somatosensory neuro-prosthetics that have the potential to regenerate sensible functions by connecting host neuron systems in injured areas.


Assuntos
Bioimpressão , Células-Tronco Pluripotentes Induzidas , Impressão Tridimensional , Separação Celular , Humanos , Rede Nervosa , Células Receptoras Sensoriais , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA