Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 29(1): 3-31, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38148423

RESUMO

Thiosemicarbazones are biologically active substances whose structural formula is formed by an azomethine, an hydrazine, and a thioamide fragments, to generate a R2C=N-NR-C(=S)-NR2 backbone. These compounds often act as ligands to generate highly stable metal-organic complexes. In certain experimental conditions, however, thiosemicarbazones undergo reactions leading to the cleavage of the chain. Sometimes, the breakage involves desulfurization processes. The present work summarizes the different chemical factors that influence the desulfurization reactions of thiosemicarbazones, such as pH, the presence of oxidant reactants or the establishment of redox processes as those electrochemically induced, the effects of the solvent, the temperature, and the electromagnetic radiation. Many of these reactions require coordination of thiosemicarbazones to metal ions, even those present in the intracellular environment. The nature of the products generated in these reactions, their detection in vivo and in vitro, together with the relevance for the biological activity of these compounds, mainly as antineoplastic agents, is discussed.


Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Metais , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Oxirredução , Tiossemicarbazonas/química , Íons , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Environ Res ; 252(Pt 2): 118880, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582421

RESUMO

Persistent, aged hydrocarbons in soil hinder remediation, posing a significant environmental threat. While bioremediation offers an environmentally friendly and cost-effective approach, its efficacy for complex contaminants relies on enhancing pollutant bioavailability. This study explores the potential of immobilized bacterial consortia combined with biochar and rhamnolipids to accelerate bioremediation of aged total petroleum hydrocarbon (TPH)-contaminated soil. Previous research indicates that biochar and biosurfactants can increase bioremediation rates, while mixed consortia offer sequential degradation and higher hydrocarbon mineralization. The present investigation aimed to assess whether combining these strategies could further enhance degradation in aged, complex soil matrices. The bioaugmentation (BA) with bacterial consortium increased the TPHs degradation in aged soil (over 20% compared to natural attenuation - NA). However, co-application of BA with biochar and rhamnolipid higher did not show a statistically prominent synergistic effect. While biochar application facilitated the maintenance of hydrocarbon degrading bacterial consortium in soil, the present study did not identify a direct influence in TPHs degradation. The biochar application in contaminated soil contributed to TPHs adsorption. Rhamnolipid alone slightly increased the TPHs biodegradation with NA, while the combined bioaugmentation treatment with rhamnolipid and biochar increased the degradation between 27.5 and 29.8%. These findings encourage further exploration of combining bioaugmentation with amendment, like biochar and rhamnolipid, for remediating diverse environmental matrices contaminated with complex and aged hydrocarbons.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Glicolipídeos , Hidrocarbonetos , Poluentes do Solo , Poluentes do Solo/metabolismo , Glicolipídeos/metabolismo , Carvão Vegetal/química , Hidrocarbonetos/metabolismo , Microbiologia do Solo , Petróleo/metabolismo , Solo/química
3.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807775

RESUMO

We describe the synthesis of fluorogenic arylureas and amides and their interaction with primary or secondary amines under air and light in organic-aqueous mixtures to give rise to a new class of persistent organic radicals, described on the basis of their electron paramagnetic resonance (EPR), as well as UV-vis, fluorescence, NMR, and quantum mechanics calculations, and their prospective use as multi-signal reporters in a smart label for fish freshness.


Assuntos
Amidas/síntese química , Aminas/química , Produtos Pesqueiros/análise , Corantes Fluorescentes/síntese química , Análise de Alimentos/métodos , Amidas/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Fluorescência , Corantes Fluorescentes/química , Radicais Livres/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Perciformes
4.
Int J Mol Sci ; 21(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892228

RESUMO

The ability of commercial monolayer graphene oxide (GO) and graphene oxide nanocolloids (GOC) to interact with different unicellular systems and biomolecules was studied by analyzing the response of human alveolar carcinoma epithelial cells, the yeast Saccharomyces cerevisiae and the bacteria Vibrio fischeri to the presence of different nanoparticle concentrations, and by studying the binding affinity of different microbial enzymes, like the α-l-rhamnosidase enzyme RhaB1 from the bacteria Lactobacillus plantarum and the AbG ß-d-glucosidase from Agrobacterium sp. (strain ATCC 21400). An analysis of cytotoxicity on human epithelial cell line A549, S. cerevisiae (colony forming units, ROS induction, genotoxicity) and V. fischeri (luminescence inhibition) cells determined the potential of both nanoparticle types to damage the selected unicellular systems. Also, the protein binding affinity of the graphene derivatives at different oxidation levels was analyzed. The reported results highlight the variability that can exist in terms of toxicological potential and binding affinity depending on the target organism or protein and the selected nanomaterial.


Assuntos
Grafite/química , Nanopartículas/química , Células A549 , Agrobacterium/efeitos dos fármacos , Agrobacterium/metabolismo , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/metabolismo , Linhagem Celular Tumoral , Glicosídeo Hidrolases/metabolismo , Humanos , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/metabolismo , Nanoestruturas/química , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119472, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493936

RESUMO

Kaolinite-rich Cretaceous clay sediment samples from Burgos (Spain) have been analyzed by elemental analysis, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction and different spectroscopic techniques, as Fourier Transform Infrared, ultraviolet-visible and electron paramagnetic resonance. The clay sediment samples mainly contain quartz, muscovite and kaolinite. Different radicals, as A- and B-Centers in kaolinite and organic paramagnetic species, are detected. An illite/kaolinite FTIR band ratio parameter (IKB) is proposed to infer the illite/kaolinite proportion, which can be useful to graphically visualize the iron-substituted Al(III) sites. Studies of the activity as scavengers of DPPH and ABTS radicals show that samples with a larger amount of orthorhombic Fe(III) ions replacing Al(III) ions exhibit a higher antioxidant capacity.

6.
Dalton Trans ; 50(28): 9812-9826, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34190268

RESUMO

We report here the synthesis, crystal structure, characterization and anticancer activity of a copper(ii)-hydrazone complex, [Cu(MeBHoVa)(H2O)2](NO3) (for short, CuHL), against human breast cancer cells on monolayer (2D) and spheroids/mammospheres (3D). The solid-state molecular structure of the complex has been determined by X-ray diffraction methods. The conformational space was searched and geometries were optimized both in the gas phase and including solvent effects by computational methods based on DFT. The compound has been characterized in the solid state and in solution by spectroscopic (FTIR, Raman, UV-vis) methods. The results were compared with those obtained for the hydrazone ligand and complemented with DFT calculations. Cell viability assays on MCF7 (IC50(CuHL) = 1.7 ± 0.1 µM, IC50(CDDP) = 42.0 ± 3.2 µM) and MDA-MB-231 (IC50(CuHL) = 1.6 ± 0.1 µM, IC50(CDDP) = 131.0 ± 18 µM) demonstrated that the complex displays higher antitumor activity than cisplatin (CDDP) on 2D and 3D human breast cancer cell models. Molecular docking and molecular dynamics simulations showed that CuHL could interacts with DNA, inducing a significant genotoxic effect on both breast cancer cells from 0.5 to 1 µM. On the other hand, CuHL increases the ROS production and induces cell programmed death on breast cancer cells at very low micromolar concentrations (0.5-1.0 µM). Moreover, the compound decreased the amount of breast CSCs on MCF7 and MDA-MB-231 cells reducing the percentage of CD44+/CD24-/low cells from 0.5 to 1.5 µM. In addition, CuHL overcame CDDP with an IC50 value 65-fold lower against breast multicellular spheroids ((IC50(CuHL) = 2.2 ± 0.3 µM, IC50(CDDP) = 125 ± 4.5 µM)). Finally, CuHL reduced mammosphere formation capacity, hence affecting the size and number of mammospheres and showing that the complex exhibits antitumor properties on monolayer (2D) and spheroids (3D) derived from human breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Hidrazonas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Cobre/química , Dano ao DNA , Feminino , Humanos , Hidrazonas/química , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênicos/química , Mutagênicos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Esferoides Celulares/efeitos dos fármacos
7.
J Biol Inorg Chem ; 15(4): 515-32, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20087612

RESUMO

The interaction of the Cu(II) drugs CuL(NO(3)) and CuL'(NO(3)) (HL is pyridine-2-carbaldehyde thiosemicarbazone and HL' is pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, in water named [CuL](+) and [CuL'](+)) with [poly(dA-dT)](2), [poly(dG-dC)](2), and calf thymus (CT) DNA has been probed in aqueous solution at pH 6.0, I = 0.1 M, and T = 25 degrees C by absorbance, fluorescence, circular dichroism, and viscosity measurements. The results reveal that these drugs act as groove binders with [poly(dA-dT)](2), with a site size n = 6-7, whereas they act as external binders with [poly(dG-dC)](2) and/or CT-DNA, thus establishing overall electrostatic interaction with n = 1. The binding constants with [CuL'](+) were slightly larger than with [CuL](+). The title compounds display some cleavage activity in the presence of thiols, bringing about the rupture of the DNA strands by the reactive oxygen species formed by reoxidation of Cu(I) to Cu(II); this feature was not observed in the absence of thiols. Mutagenic assays performed both in the presence and in the absence of S9 mix, probed by the Ames test on TA 98, TA 100, and TA 102, were negative. Weak genotoxic activity was detected for [CuL](+) and [CuL'](+), with a significative dose-response effect for [CuL'](+), which was shown to be more cytotoxic in the Ames test and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation assays. Methylation of the terminal NH(2) group enhances the antiproliferative activity of the pyridine-2-carbaldehyde thiosemicarbazones.


Assuntos
Cobre/química , DNA/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Poli dA-dT/metabolismo , Polidesoxirribonucleotídeos/metabolismo , Tiossemicarbazonas/química , Ácido 3-Mercaptopropiônico/metabolismo , Animais , Sequência de Bases , Bovinos , Linhagem Celular , DNA/genética , Quebras de DNA/efeitos dos fármacos , Ditiotreitol/metabolismo , Glutationa/metabolismo , Concentração de Íons de Hidrogênio , Testes de Mutagenicidade , Compostos Organometálicos/farmacologia , Oxirredução , Poli dA-dT/genética , Polidesoxirribonucleotídeos/genética , Análise Espectral , Temperatura , Viscosidade
8.
J Inorg Biochem ; 206: 110993, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32088593

RESUMO

Colorectal cancer is the third most common type of cancer and has a high incidence in developed countries. At present, specific treatments are being required to allow individualized therapy depending on the molecular alteration on which the drug may act. The aim of this project is to evaluate whether HPTSC and HPTSC* thiosemicarbazones (HPTSC = pyridine-2-carbaldehyde thiosemicarbazone and HPTSC* = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone), and their complexes with different transition metal ions as Cu(II), Fe(III) and Co(III), have antitumor activity in colon cancer cells (HT-29 and SW-480), that have different oncogenic characteristics. Cytotoxicity was evaluated and the involvement of oxidative stress in its mechanism of action was analyzed by quantifying the superoxide dismutase activity, redox state by quantification of the thioredoxin levels and reduced/oxidized glutathione rate and biomolecules damage. The apoptotic effect was evaluated by measurements of the levels of caspase 9 and 3 and the index of histones. All the metal-thiosemicarbazones have antitumor activity mediated by oxidative stress. The HPTSC*-Cu was the compound that showed the best antitumor and apoptotic characteristics for the cell line SW480, that is KRAS gene mutated.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobalto/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Complexos de Coordenação/química , Cobre/química , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/química , Glutationa/metabolismo , Células HT29 , Humanos , Compostos Organometálicos/química , Oxirredução , Piridinas/química , Tiossemicarbazonas/química
9.
ACS Appl Mater Interfaces ; 10(21): 18170-18182, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29732878

RESUMO

The modification of carbon nanomaterials with biological molecules paves the way toward their use in biomedical and biotechnological applications, such as next-generation biocatalytic processes, development of biosensors, implantable electronic devices, or drug delivery. In this study, different commercial graphene derivatives, namely, monolayer graphene oxide (GO), graphene oxide nanocolloids (GOCs), and polycarboxylate-functionalized graphene nanoplatelets (GNs), were compared as biomolecule carrier matrices. Detailed spectroscopic analyses showed that GO and GOC were similar in composition and functional group content and very different from GN, whereas divergent morphological characteristics were observed for each nanomaterial through microscopy analyses. The commercial α-l-rhamnosidase RhaB1 from the probiotic bacterium Lactobacillus plantarum, selected as a model biomolecule for its relevant role in the pharma and food industries, was directly immobilized on the different materials. The binding efficiency and biochemical properties of RhaB1-GO, RhaB1-GOC, and RhaB1-GN composites were analyzed. RhaB1-GO and RhaB1-GOC showed high binding efficiency, whereas the enzyme loading on GN, not tested in previous enzyme immobilization studies, was low. The enzyme showed contrasting changes when immobilized on the different material supports. The effect of pH on the activity of the three RhaB1-immobilized versions was similar to that observed for the free enzyme, whereas the activity-temperature profiles and the response to the presence of inhibitors varied significantly between the RhaB1 versions. In addition, the apparent Km for the immobilized and soluble enzymes did not change. Finally, the free RhaB1 and the immobilized enzyme in GOC showed the best storage and reutilization stability, keeping most of their initial activity after 8 weeks of storage at 4 °C and 10 reutilization cycles, respectively. This study shows, for the first time, that distinct commercial graphene derivatives can influence differently the catalytic properties of an enzyme during its immobilization.


Assuntos
Grafite/química , Estabilidade Enzimática , Enzimas Imobilizadas , Glicosídeo Hidrolases , Concentração de Íons de Hidrogênio , Lactobacillus plantarum
10.
J Inorg Biochem ; 180: 69-79, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247869

RESUMO

Thiosemicarbazones (TSCs), and their copper derivatives, have been extensively studied mainly due to the potential applications as antitumor compounds. A part of the biological activity of the TSC-CuII complexes rests on their reactivity against cell reductants, as glutathione (GSH). The present paper describes the structure of the [Cu(PTSC)(ONO2)]n compound (1) (HPTSC=pyridine-2-carbaldehyde thiosemicarbazone) and its spectroscopic and magnetic properties. ESI studies performed on the reaction of GSH with 1 and the analogous [{Cu(PTSC*)(ONO2)}2] derivative (2, HPTSC*=pyridine-2-carbaldehyde 4N-methylthiosemicarbazone) show the absence of peaks related with TSC-Cu-GSH species. However GSH-Cu ones are detected, in good agreement with the release of CuI ions after reduction in the experimental conditions. The reactivity of 1 and 2 with cytochrome c and myoglobin and their activities against HT-29 and SW-480 colon carcinoma cell lines are compared with those shown by the free HPTSC and HPTSC* ligands.


Assuntos
Neoplasias Colorretais/patologia , Cobre/química , Glutationa/química , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Cristalografia por Raios X , Citocromos c/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa/metabolismo , Humanos , Estrutura Molecular , Mioglobina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Dalton Trans ; 45(46): 18704-18718, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27833944

RESUMO

Thiosemicarbazones and their metal derivatives have long been screened as antitumor agents, and their interactions with DNA have been analysed. Herein, we describe the synthesis and characterization of compounds containing [CuL]+ entities (HL = pyridine-2-carbaldehyde thiosemicarbazone) and adenine, cytosine or 9-methylguanine, and some of their corresponding nucleotides. For the first time, crystal structures of adenine- and 9-methylguanine-containing thiosemicarbazone complexes are reported. To the best of our knowledge, the first study on the affinity thiosemicarbazone-RNA is also provided here. Experimental and computational studies have shown that [CuL(OH2)]+ entities at low concentration intercalate into dsRNA poly(rA)·poly(rU) through strong hydrogen bonds involving uracil residues and π-π stacking interactions. In fact, noncovalent interactions are present both in the solid state and in solution. This behaviour diverges from that observed with DNA duplexes and creates an optimistic outlook in achieving selective binding to RNA for subsequent possible medical applications.

12.
Dalton Trans ; 43(29): 11388-96, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24931222

RESUMO

The copper complex of a polydentate non-symmetrical Schiff base ligand [LCu]2, prepared by template synthesis, has been reacted with the series of lanthanide ions. This complex used as a ligand possesses two functions (phenol and oxime) able to coordinate the Ln ions and, according to the Ln ion, three types of complexes are obtained. From La to Eu, trinuclear [(LCu)2Ln(NO3)3] complexes with a double phenoxo-oximato bridge were isolated. From Gd to Ho, the complexes [(LCu)2Ln(NO3)3(H2O)] are still trinuclear, with a supplementary water molecule linked to the Ln ion but the Cu(II) and Ln(III) ions are only bridged by the oximato (N-O) pair, the phenoxo oxygen atom being hydrogen-bridged to the Ln-coordinated water molecule. Then, with heavier Ln ions, dinuclear [(LCu)Ln(NO3)3(H2O)2] complexes are characterized. The magnetic study demonstrates that the oximato bridge is responsible for the antiferromagnetic character of the Cu-Gd interaction, with JCuGd = -0.63 cm(-1) in [(LCu)2Gd(NO3)3(H2O)], in contrast to the ferromagnetic Cu-Gd interaction induced by the single oxygen atom phenoxo bridge.

13.
Dalton Trans ; 43(24): 9271-82, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24816575

RESUMO

A kinetic, calorimetric, mass spectrometry and EPR study has been performed on the formation of the metallacrown Cu(2+)[12-MCCu(Alaha)-4] from Cu(ii) and α-alaninehydroxamic acid (H2L). The acidity range where Cu(2+)[12-MCCu(Alaha)-4] is stable lies between pH 3.5 and 6.0. For pH values below that range the complex CuHL(+) is the prevailing species. This species plays a fundamental role in the formation of Cu(2+)[12-MCCu(Alaha)-4]. Actually, depending on the Cu(II)/H2L ratio and on pH, it can originate a dimer Cu2(HL)2(2+) or a dinuclear complex Cu2L(2+). Both species constitute the nuclei necessary for a further oligomerisation reaction which ends when the crown is formed. The kinetics of Cu(2+)[12-MCCu(Alaha)-4] formation is biphasic. Under conditions of Cu(II) excess the fast phase leads to formation of Cu2L(2+). The slow phase is interpreted in terms of a sequential addition of monomers (CuHL(+)) to the Cu2L(2+) nucleus to form the crown. The interaction of La(III) with Cu(2+)[12-MCCu(Alaha)-4] has also been investigated. The system displays a biphasic behaviour; in the first phase the intermediate complex Cu[12-MCCu(Alaha)-4]La is formed which, in excess of ligand, evolves towards the larger metallacrown La(3+)[15-MCCu(Alaha)-5]. The reaction mechanisms of the two investigated systems are discussed.

14.
J Inorg Biochem ; 102(10): 1892-900, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18684508

RESUMO

Experimental studies of the binding interactions of [CuL(NO(3))] and [{CuL'(NO(3))}(2)] (HL=pyridine-2-carbaldehyde thiosemicarbazone, and HL'=pyridine-2-carbaldehyde 4N-methylthiosemicarbazone) with adenine, guanine, cytosine, thymine and their mononucleotides (dNMP), 2-deoxyadenosine-5'-monophosphate, (dAMP), 2'-deoxyguanosine-5'-monophosphate, (dGMP), 2'-deoxycytidine-5'-monophosphate (dCMP), and thymidine-5'-monophosphate (dTMP) have been carried out in aqueous solution at pH 6.0, I=0.1M (NaClO(4)) and T=25 degrees C. The complexation constants of these compounds, calculated by Hildebrand-Benesi plots for the dye binding, D, ([CuL] or [CuL']) to the nucleobases or nucleotides (P), have shown two linear stretches in adenine, guanine, dAMP and dGMP. The data were analyzed in terms of formation of 1:1 DP and 1:2 DP(2) complexes with increasing purine base or nucleotide content. For cytosine and dCMP only 1:1 complexes have been observed, whereas for thymine and dTMP such complex structures were not observed. The [CuL(Hcyt)](ClO(4)) cytosine derivative has been isolated and characterized. The crystal structure consists of perchlorate ions and [CuL(Hcyt)](+) monomers attached by hydrogen bond, chelate pi-ring and anion-pi interactions. The Cu(2+) ions bind to the NNS chelating moiety of the thiosemicarbazone ligand and the cytosine N13 site (N3, most common notation) yielding a square-planar geometry. A pseudocoordination to the cytosine O12 site (=O2) can also be considered.


Assuntos
Cobre/química , DNA/química , Nucleotídeos/química , Compostos Organometálicos/química , Purinas/química , Piridinas/química , Pirimidinas/química , Tiossemicarbazonas/química , Adenina/química , Nucleotídeos de Adenina/química , Cristalografia por Raios X , Citosina/química , Nucleotídeos de Citosina/química , Guanina/química , Nucleotídeos de Guanina/química
15.
J Inorg Biochem ; 102(10): 1910-20, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18692903

RESUMO

New complexes of formulae [Cu(HL(2))(H(2)O)(NO(3))](NO(3)) (1), [{Cu(L(1))(tfa)}(2)] (2), [{Cu(L(1))}(2)(pz)](ClO(4))(2) (3) and {[{Cu(L(1))}(2)(dca)](ClO(4))}(n) (4), where HL(1)=pyridine-2-carbaldehyde thiosemicarbazone, HL(2)=pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa=trifluoroacetic acid (CF(3)COOH), pz=pyrazine (C(4)H(4)N(2)) and dca=dicyanamide [N(CN)(2)](-), have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers' equation for copper(II) dimers derived from H=-2JS(1)S(2) being the obtained J/k values -4.8, -4.3 and -5.1K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL(1))(tfa)}(2)](tfa)(2) compound has been also measured for the first time. The J/k value is -0.3K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.


Assuntos
Cobre/química , DNA/metabolismo , Compostos Organometálicos/metabolismo , Piridinas/química , Tiossemicarbazonas/química , Cobre/metabolismo , Cristalografia por Raios X , DNA/química , Magnetismo , Compostos Organometálicos/química , Piridinas/metabolismo , Tiossemicarbazonas/metabolismo
16.
Chemistry ; 8(23): 5430-4, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12561315

RESUMO

Two heterodimetallic complexes of formulae [LCo(MeOH)Gd (NO3)3] (1) and [LCo(AcO)2Gd(NO3)2] (2) (H2L = 1,3-bis[(3-methoxysalicylidene)amino]-2,2'-dimethylpropane) have been synthesized and characterized. The structure of 1 consists of discrete dinuclear entities. The cobalt(II) ion exhibits a square-pyramidal geometry, in which the basal plane is formed by the N2O2 set of the inner Schiff base site and the apical position is occupied by the methanol oxygen atom. The gadolinium(III) ion is ten-coordinate to three bidentate nitrate groups and the four oxygen atoms of the Schiff base. The phenolate oxygen atoms act as a bridge between both metal ions. Complex 2 is also formed by isolated dinuclear species. The cobalt(III) ion shows a distorted octahedral geometry in which the equatorial plane is formed by the N2O2 set of the Schiff base, and the axial positions are occupied by two oxygen atoms from both acetate groups. The gadolinium(III) ion is ten-coordinate to two bidentate nitrate groups, two oxygen atoms of the acetate groups, and the four oxygen atoms of the Schiff base. The metal ions are bridged through both the phenolate oxygen and the acetate groups, the latter acting as mu 2 ligands. Magnetic measurements on compound 1 allowed, for the first time, a quantitative evaluation of the J(Co,Gd) ferromagnetic interaction parameter (J = 0.90 cm-1). The CoII zero-field splitting has to be taken into account to fit the experimental data at low temperature (D = 4.2 cm-1). In complex 2, the magnetically isolated gadolinium center obeys a Curie law.

17.
Inorg Chem ; 41(6): 1345-7, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11896698

RESUMO

The addition of pyridine-2-carbaldehyde 4N-methylthiosemicarbazone (C8H10N4S) to an aqueous solution of copper(II) nitrate yields [[Cu(C8H9N4S)(NO3)]2] (1). This complex consists of centrosymmetric dinuclear entities containing square-pyramidal copper(II) ions bridged through the sulfur thioamide atoms. The oxidation of 1 with KBrO3 or KIO3 gives rise to a compound with formula [[Cu(C8H8N4O)(H2O)2(SO4)]2]*2H2O (2) (C8H8N4O = 2-methylamino-5-pyridin-2-yl-1,3,4-oxadiazole). The structure of 2 is made up of centrosymmetric dimers where the copper(II) ions exhibit a distorted octahedral coordination and are connected by the oxadiazole moiety. The metal ions in 2 can be removed by addition of K4[Fe(CN)6], and then the oxadiazole ligand can be isolated and recrystallized as (C8H8N4O)*3H2O (3).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA