Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791357

RESUMO

The lung is prone to infections from respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). A challenge in combating these infections is the difficulty in targeting antiviral activity directly at the lung mucosal tract. Boosting the capability of the respiratory mucosa to trigger a potent immune response at the onset of infection could serve as a potential strategy for managing respiratory infections. This study focused on screening immunomodulators to enhance innate immune response in lung epithelial and immune cell models. Through testing various subfamilies and pathways of pattern recognition receptors (PRRs), the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family was found to selectively activate innate immunity in lung epithelial cells. Activation of NOD1 and dual NOD1/2 by the agonists TriDAP and M-TriDAP, respectively, increased the number of IL-8+ cells by engaging the NF-κB and interferon response pathways. Lung epithelial cells showed a stronger response to NOD1 and dual NOD1/2 agonists compared to control. Interestingly, a less-pronounced response to NOD1 agonists was noted in PBMCs, indicating a tissue-specific effect of NOD1 in lung epithelial cells without inducing widespread systemic activation. The specificity of the NOD agonist pathway was confirmed through gene silencing of NOD1 (siRNA) and selective NOD1 and dual NOD1/2 inhibitors in lung epithelial cells. Ultimately, activation induced by NOD1 and dual NOD1/2 agonists created an antiviral environment that hindered SARS-CoV-2 replication in vitro in lung epithelial cells.


Assuntos
COVID-19 , Células Epiteliais , Pulmão , Proteína Adaptadora de Sinalização NOD1 , SARS-CoV-2 , Humanos , Células A549 , Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/farmacologia , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Imunidade Inata/efeitos dos fármacos , Interleucina-8/metabolismo , Pulmão/imunologia , Pulmão/virologia , Pulmão/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499329

RESUMO

HIV latent infection may be associated with disrupted viral RNA sensing, interferon (IFN) signaling, and/or IFN stimulating genes (ISG) activation. Here, we evaluated the use of compounds selectively targeting at the inhibitor of nuclear factor-κB (IκB) kinase (IKK) complex subunits and related kinases (TBK1) as a novel pathway to reverse HIV-1 latency in latently infected non-clonal lymphoid and myeloid cell in vitro models. IKK inhibitors (IKKis) triggered up to a 1.8-fold increase in HIV reactivation in both, myeloid and lymphoid cell models. The best-in-class IKKis, targeting TBK-1 (MRT67307) and IKKß (TCPA-1) respectively, were also able to significantly induce viral reactivation in CD4+ T cells from people living with HIV (PLWH) ex vivo. More importantly, although none of the compounds tested showed antiviral activity, the combination of the distinct IKKis with ART did not affect the latency reactivation nor blockade of HIV infection by ART. Finally, as expected, IKKis did not upregulate cell activation markers in primary lymphocytes and innate immune signaling was blocked, resulting in downregulation of inflammatory cytokines. Overall, our results support a dual role of IKKis as immune modulators being able to tackle the HIV latent reservoir in lymphoid and myeloid cellular models and putatively control the hyperinflammatory responses in chronic HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Latência Viral , Ativação Viral , Linfócitos T CD4-Positivos
3.
Artigo em Inglês | MEDLINE | ID: mdl-28874382

RESUMO

The persistence of HIV despite suppressive antiretroviral therapy is a major roadblock to HIV eradication. Current strategies focused on inducing the expression of latent HIV fail to clear the persistent reservoir, prompting the development of new approaches for killing HIV-positive cells. Recently, acitretin was proposed as a pharmacological enhancer of the innate cellular defense network that led to virus reactivation and preferential death of infected cells. We evaluated the capacity of acitretin to reactivate and/or to facilitate immune-mediated clearance of HIV-positive cells. Acitretin did not induce HIV reactivation in latently infected cell lines (J-Lat and ACH-2). We could observe only modest induction of HIV reactivation by acitretin in latently green fluorescent protein-HIV-infected Jurkat cells, comparable to suboptimal concentrations of vorinostat, a known latency-reversing agent (LRA). Acitretin induction was insignificant, however, compared to optimal concentrations of LRAs. Acitretin failed to reactivate HIV in a model of latently infected primary CD4+ T cells but induced retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling (MAVS) expression in infected and uninfected cells, confirming the role of acitretin as an innate immune modulator. However, this effect was not associated with selective killing of HIV-positive cells. In conclusion, acitretin-mediated stimulation of the RIG-I pathway for HIV reactivation is modest and thus may not meaningfully affect the HIV reservoir. Stimulation of the RIG-I-dependent interferon (IFN) cascade by acitretin may not significantly affect the selective destruction of latently infected HIV-positive cells.


Assuntos
Acitretina/farmacologia , Infecções por HIV/imunologia , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Latência Viral/efeitos dos fármacos , Proteína DEAD-box 58/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/patogenicidade , HIV-1/fisiologia , Humanos , Receptores Imunológicos , Transdução de Sinais/efeitos dos fármacos
4.
Viruses ; 15(7)2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37515121

RESUMO

The oral cavity is particularly susceptible to viral infections that are self-recovering in most cases. However, complications may appear in severe cases and/or immunocompromised subjects. Cetylpyridinium chloride (CPC)-containing mouthwashes are able to decrease the infectivity of the SARS-CoV-2 virus by disrupting the integrity of the viral envelope. Here, we show that CPC, as the active ingredient contained in commercialized, exerts significant antiviral activity against enveloped viruses, such as HSV-1, but not against non-enveloped viruses, such as HPV. CPC-containing mouthwashes have been used as antiseptics for decades, and thus, they can represent a cost-effective measure to limit infection and spread of enveloped viruses infecting the oral cavity, aiding in reducing viral transmission.


Assuntos
Anti-Infecciosos Locais , COVID-19 , Herpesvirus Humano 1 , Humanos , Antissépticos Bucais/farmacologia , Cetilpiridínio/farmacologia , SARS-CoV-2 , Anti-Infecciosos Locais/farmacologia
5.
EBioMedicine ; 95: 104732, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37506557

RESUMO

BACKGROUND: Biomarkers predicting the outcome of HIV-1 virus control in natural infection and after therapeutic interventions in HIV-1 cure trials remain poorly defined. The BCN02 trial (NCT02616874), combined a T-cell vaccine with romidepsin (RMD), a cancer-drug that was used to promote HIV-1 latency reversal and which has also been shown to have beneficial effects on neurofunction. We conducted longitudinal plasma proteomics analyses in trial participants to define biomarkers associated with virus control during monitored antiretroviral pause (MAP) and to identify novel therapeutic targets that can improve future cure strategies. METHODS: BCN02 was a phase I, open-label, single-arm clinical trial in early-treated, HIV infected individuals. Longitudinal plasma proteomes were analyzed in 11 BCN02 participants, including 8 participants that showed a rapid HIV-1 plasma rebound during a monitored antiretroviral pause (MAP-NC, 'non-controllers') and 3 that remained off ART with sustained plasma viremia <2000 copies/ml (MAP-C, 'controllers'). Inflammatory and neurological proteomes in plasma were evaluated and integration data analysis (viral and neurocognitive parameters) was performed. Validation studies were conducted in a cohort of untreated HIV-1+ individuals (n = 96) and in vitro viral replication assays using an anti-CD33 antibody were used for functional validation. FINDINGS: Inflammatory plasma proteomes in BCN02 participants showed marked longitudinal alterations. Strong proteome differences were also observed between MAP-C and MAP-NC, including in baseline timepoints. CD33/Siglec-3 was the unique plasma marker with the ability to discriminate between MAPC-C and MAP-NC at all study timepoints and showed positive correlations with viral parameters. Analyses in an untreated cohort of PLWH confirmed the positive correlation between viral parameters and CD33 plasma levels, as well as PBMC gene expression. Finally, adding an anti-CD33 antibody to in vitro virus cultures significantly reduced HIV-1 replication and proviral levels in T cells and macrophages. INTERPRETATION: This study indicates that CD33/Siglec-3 may serve as a predictor of HIV-1 control and as potential therapeutic tool to improve future cure strategies. FUNDING: Spanish Science and Innovation Ministry (SAF2017-89726-R and PID2020-119710RB-I00), NIH (P01-AI131568), European Commission (GA101057548) and a Grifols research agreement.


Assuntos
Biomarcadores , Infecções por HIV , HIV-1 , Carga Viral , Humanos , Linfócitos T CD4-Positivos , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , Soropositividade para HIV , HIV-1/genética , HIV-1/fisiologia , Leucócitos Mononucleares , Proteoma , Proteômica , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/sangue , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Vacinação , Carga Viral/efeitos dos fármacos , Carga Viral/genética , Carga Viral/imunologia , Fármacos Anti-HIV , Biomarcadores/sangue , Biomarcadores/metabolismo
6.
Front Immunol ; 13: 1001068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131914

RESUMO

The persistence of latent HIV reservoirs allows for viral rebound upon antiretroviral therapy interruption, hindering effective HIV-1 cure. Emerging evidence suggests that modulation of innate immune stimulation could impact viral latency and contribute to the clearing of HIV reservoir. Here, the latency reactivation capacity of a subclass of selective JAK2 inhibitors was characterized as a potential novel therapeutic strategy for HIV-1 cure. Notably, JAK2 inhibitors reversed HIV-1 latency in non-clonal lymphoid and myeloid in vitro models of HIV-1 latency and also ex vivo in CD4+ T cells from ART+ PWH, albeit its function was not dependent on JAK2 expression. Immunophenotypic characterization and whole transcriptomic profiling supported reactivation data, showing common gene expression signatures between latency reactivating agents (LRA; JAK2i fedratinib and PMA) in contrast to other JAK inhibitors, but with significantly fewer affected gene sets in the pathway analysis. In depth evaluation of differentially expressed genes, identified a significant upregulation of IRF7 expression despite the blockade of the JAK-STAT pathway and downregulation of proinflammatory cytokines and chemokines. Moreover, IRF7 expression levels positively correlated with HIV latency reactivation capacity of JAK2 inhibitors and also other common LRAs. Collectively, these results represent a promising step towards HIV eradication by demonstrating the potential of innate immune modulation for reducing the viral reservoir through a novel pathway driven by IRF7.


Assuntos
Infecções por HIV , HIV-1 , Inibidores de Janus Quinases , Citocinas/farmacologia , Infecções por HIV/tratamento farmacológico , Humanos , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Ativação Viral , Latência Viral
7.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158911

RESUMO

SAMHD1 is a deoxynucleotide triphosphate (dNTP) triphosphohydrolase with important roles in the control of cell proliferation and apoptosis, either through the regulation of intracellular dNTPs levels or the modulation of the DNA damage response. However, SAMHD1's role in cancer evolution is still unknown. We performed the first in-depth study of SAMHD1's role in advanced solid tumors, by analyzing samples of 128 patients treated with chemotherapy agents based on platinum derivatives and/or antimetabolites, developing novel in vitro knock-out models to explore the mechanisms driving SAMHD1 function in cancer. Low (or no) expression of SAMHD1 was associated with a positive prognosis in breast, ovarian, and non-small cell lung cancer (NSCLC) cancer patients. A predictive value was associated with low-SAMHD1 expression in NSCLC and ovarian patients treated with antimetabolites in combination with platinum derivatives. In vitro, SAMHD1 knock-out cells showed increased γ-H2AX and apoptosis, suggesting that SAMHD1 depletion induces DNA damage leading to cell death. In vitro treatment with platinum-derived drugs significantly enhanced γ-H2AX and apoptotic markers expression in knock-out cells, indicating a synergic effect of SAMHD1 depletion and platinum-based treatment. SAMHD1 expression represents a new strong prognostic and predictive biomarker in solid tumors and, thus, modulation of the SAMHD1 function may constitute a promising target for the improvement of cancer therapy.

8.
Front Microbiol ; 13: 840757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602059

RESUMO

The emerging SARS-CoV-2 variants of concern (VOCs) may display enhanced transmissibility, more severity and/or immune evasion; however, the pathogenesis of these new VOCs in experimental SARS-CoV-2 models or the potential infection of other animal species is not completely understood. Here we infected K18-hACE2 transgenic mice with B.1, B.1.351/Beta, B.1.617.2/Delta and BA.1.1/Omicron isolates and demonstrated heterogeneous infectivity and pathogenesis. B.1.351/Beta variant was the most pathogenic, while BA.1.1/Omicron led to lower viral RNA in the absence of major visible clinical signs. In parallel, we infected wildtype (WT) mice and confirmed that, contrary to B.1 and B.1.617.2/Delta, B.1.351/Beta and BA.1.1/Omicron can infect them. Infection in WT mice coursed without major clinical signs and viral RNA was transient and undetectable in the lungs by day 7 post-infection. In silico modeling supported these findings by predicting B.1.351/Beta receptor binding domain (RBD) mutations result in an increased affinity for both human and murine ACE2 receptors, while BA.1/Omicron RBD mutations only show increased affinity for murine ACE2.

9.
Viruses ; 13(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34960648

RESUMO

Modulation of the antiviral innate immune response has been proposed as a putative cellular target for the development of novel pan-viral therapeutic strategies. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is especially relevant due to its essential role in the regulation of local and systemic inflammation in response to viral infections, being, therefore, a putative therapeutic target. Here, we review the extraordinary diversity of strategies that viruses have evolved to interfere with JAK-STAT signaling, stressing the relevance of this pathway as a putative antiviral target. Moreover, due to the recent remarkable progress on the development of novel JAK inhibitors (JAKi), the current knowledge on its efficacy against distinct viral infections is also discussed. JAKi have a proven efficacy against a broad spectrum of disorders and exhibit safety profiles comparable to biologics, therefore representing good candidates for drug repurposing strategies, including viral infections.


Assuntos
Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Viroses/metabolismo , Vírus/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Imunidade Inata , Inflamação , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/antagonistas & inibidores , Viroses/tratamento farmacológico , Viroses/imunologia , Vírus/classificação , Vírus/efeitos dos fármacos
10.
Cancers (Basel) ; 12(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197329

RESUMO

Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase involved in the regulation of the intracellular dNTP pool, linked to viral restriction, cancer development and autoimmune disorders. SAMHD1 function is regulated by phosphorylation through a mechanism controlled by cyclin-dependent kinases and tightly linked to cell cycle progression. Recently, SAMHD1 has been shown to decrease the efficacy of nucleotide analogs used as chemotherapeutic drugs. Here, we demonstrate that SAMHD1 can enhance or decrease the efficacy of various classes of anticancer drug, including nucleotide analogues, but also anti-folate drugs and CDK inhibitors. Importantly, we show that selective CDK4/6 inhibitors are pharmacological activators of SAMHD1 that act by inhibiting its inactivation by phosphorylation. Combinations of a CDK4/6 inhibitor with nucleoside or folate antimetabolites potently enhanced drug efficacy, resulting in highly synergic drug combinations (CI < 0.04). Mechanistic analyses reveal that cell cycle-controlled modulation of SAMHD1 function is the central process explaining changes in anticancer drug efficacy, therefore providing functional proof of the potential of CDK4/6 inhibitors as a new class of adjuvants to boost chemotherapeutic regimens. The evaluation of SAMHD1 expression in cancer tissues allowed for the identification of cancer types that would benefit from the pharmacological modulation of SAMHD1 function. In conclusion, these results indicate that the modulation of SAMHD1 function may represent a promising strategy for the improvement of current antimetabolite-based treatments.

12.
Antiviral Res ; 168: 18-27, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31077767

RESUMO

Midostaurin is a multi-kinase inhibitor with antineoplastic activity. We assessed the capacity of midostaurin to affect early and late steps of HIV-1 infection and to reactivate HIV-1 latently infected cells, alone or in combination with histone deacetylase inhibitors (HDACi) known to act as latency-reversing agents (LRA). Acute HIV-1 infection was assessed by flow cytometry in three cell types treated with midostaurin in the presence or absence of SAMHD1. Non-infected cells were treated with midostaurin and harvested for Western blot analysis. Macrophage infections were also measured by quantitative RT-PCR. HIV-1 latency reactivation was assessed in several latency models. Midostaurin induced G2/M arrest and inhibited CDK2, preventing the phosphorylation of SAMHD1 associated to inhibition of its dNTPase activity. In the presence of SAMHD1, midostaurin blocked HIV-1 DNA formation and viral replication. However, following Vpx-mediated SAMHD1 degradation, midostaurin increased viral transcripts and virus replication. In three out of four HIV-1 latency models, including primary CD4+ T cells, midostaurin effectively reversed HIV-1 latency and was synergistic in combination with LRA vorinostat and panobinostat. Our study describes a dual effect for midostaurin in HIV-1 infection, antiviral or proviral depending on SAMHD1 activation, and highlights a role for active SAMHD1 in regulating the activity of potential HIV-1 latency reversal agents.


Assuntos
Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Estaurosporina/análogos & derivados , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , HIV-1/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Fosforilação/efeitos dos fármacos , Proteína 1 com Domínio SAM e Domínio HD/antagonistas & inibidores , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Estaurosporina/farmacologia , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
13.
Sci Rep ; 9(1): 19848, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882741

RESUMO

Infection by human papillomavirus (HPV) alters the microenvironment of keratinocytes as a mechanism to evade the immune system. A-to-I editing by ADAR1 has been reported to regulate innate immunity in response to viral infections. Here, we evaluated the role of ADAR1 in HPV infection in vitro and in vivo. Innate immune activation was characterized in human keratinocyte cell lines constitutively infected or not with HPV. ADAR1 knockdown induced an innate immune response through enhanced expression of RIG-I-like receptors (RLR) signaling cascade, over-production of type-I IFNs and pro-inflammatory cytokines. ADAR1 knockdown enhanced expression of HPV proteins, a process dependent on innate immune function as no A-to-I editing could be identified in HPV transcripts. A genetic association study was performed in a cohort of HPV/HIV infected individuals followed for a median of 6 years (range 0.1-24). We identified the low frequency haplotype AACCAT significantly associated with recurrent HPV dysplasia, suggesting a role of ADAR1 in the outcome of HPV infection in HIV+ individuals. In summary, our results suggest that ADAR1-mediated innate immune activation may influence HPV disease outcome, therefore indicating that modification of innate immune effectors regulated by ADAR1 could be a therapeutic strategy against HPV infection.


Assuntos
Adenosina Desaminase/genética , Coinfecção/fisiopatologia , Infecções por HIV/fisiopatologia , Infecções por Papillomavirus/fisiopatologia , Proteínas de Ligação a RNA/genética , Adenosina Desaminase/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Coinfecção/genética , Coinfecção/virologia , Feminino , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/virologia , Queratinócitos/metabolismo , Queratinócitos/virologia , Masculino , Pessoa de Meia-Idade , Papillomaviridae/genética , Papillomaviridae/fisiologia , Infecções por Papillomavirus/virologia , Polimorfismo de Nucleotídeo Único , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/fisiopatologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Adulto Jovem
14.
Nat Commun ; 9(1): 2739, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013105

RESUMO

CD32 has been shown to be preferentially expressed in latently HIV-1-infected cells in an in vitro model of quiescent CD4 T cells. Here we show that stimulation of CD4+ T cells with IL-2, IL-7, PHA, and anti-CD3/CD28 antibodies induces T-cell proliferation, co-expression of CD32 and the activation of the markers HLA-DR and CD69. HIV-1 infection increases CD32 expression. 79.2% of the CD32+/CD4+ T cells from HIV+ individuals under antiretroviral treatment were HLA-DR+. Resting CD4+ T cells infected in vitro generally results in higher integration of provirus. We observe no difference in provirus integration or replication-competent inducible latent HIV-1 in CD32+ or CD32- CD4+ T cells from HIV+ individuals. Our results demonstrate that CD32 expression is a marker of CD4+ T cell activation in HIV+ individuals and raises questions regarding the immune resting status of CD32+ cells harboring HIV-1 proviruses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/genética , HIV-1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/genética , Receptores de IgG/genética , Adulto , Anticorpos Monoclonais/farmacologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos CD28/antagonistas & inibidores , Antígenos CD28/genética , Antígenos CD28/imunologia , Complexo CD3/antagonistas & inibidores , Complexo CD3/genética , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Expressão Gênica , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Humanos , Interleucina-2/farmacologia , Interleucina-7/farmacologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fito-Hemaglutininas/farmacologia , Cultura Primária de Células , Provírus/genética , Provírus/imunologia , Receptores de IgG/imunologia , Integração Viral
15.
Antiviral Res ; 156: 116-127, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29906476

RESUMO

The hepatitis C virus (HCV) is a globally prevalent infectious pathogen. As many as 80% of people infected with HCV do not control the virus and develop a chronic infection. Response to interferon (IFN) therapy is widely variable in chronic HCV infected patients, suggesting that HCV has evolved mechanisms to suppress and evade innate immunity responsible for its control and elimination. Adenosine deaminase acting on RNA 1 (ADAR1) is a relevant factor in the regulation of the innate immune response. The loss of ADAR1 RNA-editing activity and the resulting loss of inosine bases in RNA are critical in producing aberrant RLR-mediated innate immune response, mediated by RNA sensors MDA5 and RIG-I. Here, we describe ADAR1 role as a regulator of innate and antiviral immune function in HCV infection, both in vitro and in patients. Polymorphisms within ADAR1 gene were found significantly associated to poor clinical outcome to HCV therapy and advanced liver fibrosis in a cohort of HCV and HIV-1 coinfected patients. Moreover, ADAR1 knockdown in primary macrophages and Huh7 hepatoma cells enhanced IFN and IFN stimulated gene expression and increased HCV replication in vitro. Overall, our results demonstrate that ADAR1 regulates innate immune signaling and is an important contributor to the outcome of the HCV virus-host interaction. ADAR1 is a potential target to boost antiviral immune response in HCV infection.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Predisposição Genética para Doença , Hepacivirus/imunologia , Hepatite C/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células Cultivadas , Humanos , Polimorfismo Genético
16.
Sci Rep ; 7(1): 13339, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042669

RESUMO

ADAR1-dependent A-to-I editing has recently been recognized as a key process for marking dsRNA as self, therefore, preventing innate immune activation and affecting the development and resolution of immune-mediated diseases and infections. Here, we have determined the role of ADAR1 as a regulator of innate immune activation and modifier of viral susceptibility in primary myeloid and lymphoid cells. We show that ADAR1 knockdown significantly enhanced interferon, cytokine and chemokine production in primary macrophages that function as antiviral paracrine factors, rendering them resistant to HIV-1 infection. ADAR1 knockdown induced deregulation of the RLRs-MAVS signaling pathway, by increasing MDA5, RIG-I, IRF7 and phospho-STAT1 expression, an effect that was partially rescued by pharmacological blockade of the pathway. In summary, our results demonstrate a role of ADAR1 in regulating innate immune function in primary macrophages, suggesting that macrophages may play an essential role in disease associated to ADAR1 dysfunction. We also show that viral inhibition is exclusively dependent on innate immune activation consequence of ADAR1 knockdown, pointing towards ADAR1 as a potential target to boost antiviral immune response.


Assuntos
Adenosina Desaminase/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Macrófagos/imunologia , Macrófagos/metabolismo , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/metabolismo , Técnicas de Silenciamento de Genes , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Interferon Tipo I/metabolismo , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/virologia , Transdução de Sinais , Viroses/etiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA