Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214451

RESUMO

The anterior cruciate ligament (ACL) is one of the main stabilizer parts of the knee. ACL injury leads to causes of osteoarthritis risk. ACL rupture is common in the young athletic population. Accurate segmentation at an early stage can improve the analysis and classification of anterior cruciate ligaments tears. This study automatically segmented the anterior cruciate ligament (ACL) tears from magnetic resonance imaging through deep learning. The knee mask was generated on the original Magnetic Resonance (MR) images to apply a semantic segmentation technique with convolutional neural network architecture U-Net. The proposed segmentation method was measured by accuracy, intersection over union (IoU), dice similarity coefficient (DSC), precision, recall and F1-score of 98.4%, 99.0%, 99.4%, 99.6%, 99.6% and 99.6% on 11451 training images, whereas on the validation images of 3817 was, respectively, 97.7%, 93.8%,96.8%, 96.5%, 97.3% and 96.9%. We also provide dice loss of training and test datasets that have remained 0.005 and 0.031, respectively. The experimental results show that the ACL segmentation on JPEG MRI images with U-Nets achieves accuracy that outperforms the human segmentation. The strategy has promising potential applications in medical image analytics for the segmentation of knee ACL tears for MR images.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Humanos , Joelho , Articulação do Joelho , Imageamento por Ressonância Magnética/métodos
2.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062521

RESUMO

This papers presents a comparative study of three different 3D scanning modalities to acquire 3D meshes of stoma barrier rings from ostomized patients. Computerized Tomography and Structured light scanning methods were the digitization technologies studied in this research. Among the Structured Light systems, the Go!Scan 20 and the Structure Sensor were chosen as the handheld 3D scanners. Nineteen ostomized patients took part in this study, starting from the 3D scans acquisition until the printed ostomy patches validation. 3D mesh processing, mesh generation and 3D mesh comparison was carried out using commercial softwares. The results of the presented study show that the Structure Sensor, which is the low cost structured light 3D sensor, has a great potential for such applications. This study also discusses the benefits and reliability of low-cost structured light systems.


Assuntos
Estomia , Impressão Tridimensional , Humanos , Reprodutibilidade dos Testes , Software
3.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696135

RESUMO

In the last decade, the developments in healthcare technologies have been increasing progressively in practice. Healthcare applications such as ECG monitoring, heartbeat analysis, and blood pressure control connect with external servers in a manner called cloud computing. The emerging cloud paradigm offers different models, such as fog computing and edge computing, to enhance the performances of healthcare applications with minimum end-to-end delay in the network. However, many research challenges exist in the fog-cloud enabled network for healthcare applications. Therefore, in this paper, a Critical Healthcare Task Management (CHTM) model is proposed and implemented using an ECG dataset. We design a resource scheduling model among fog nodes at the fog level. A multi-agent system is proposed to provide the complete management of the network from the edge to the cloud. The proposed model overcomes the limitations of providing interoperability, resource sharing, scheduling, and dynamic task allocation to manage critical tasks significantly. The simulation results show that our model, in comparison with the cloud, significantly reduces the network usage by 79%, the response time by 90%, the network delay by 65%, the energy consumption by 81%, and the instance cost by 80%.


Assuntos
Computação em Nuvem , Eletrocardiografia , Simulação por Computador , Atenção à Saúde , Modelos Teóricos
4.
Sensors (Basel) ; 20(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455753

RESUMO

Pressure injuries represent a major concern in many nations. These wounds result from prolonged pressure on the skin, which mainly occur among elderly and disabled patients. If retrieving quantitative information using invasive methods is the most used method, it causes significant pain and discomfort to the patients and may also increase the risk of infections. Hence, developing non-intrusive methods for the assessment of pressure injuries would represent a highly useful tool for caregivers and a relief for patients. Traditional methods rely on findings retrieved solely from 2D images. Thus, bypassing the 3D information deriving from the deep and irregular shape of this type of wounds leads to biased measurements. In this paper, we propose an end-to-end system which uses a single 2D image and a 3D mesh of the pressure injury, acquired using the Structure Sensor, and outputs all the necessary findings such as: external segmentation of the wound as well as its real-world measurements (depth, area, volume, major axis and minor axis). More specifically, a first block composed of a Mask RCNN model uses the 2D image to output the segmentation of the external boundaries of the wound. Then, a second block matches the 2D and 3D views to segment the wound in the 3D mesh using the segmentation output and generates the aforementioned real-world measurements. Experimental results showed that the proposed framework can not only output refined segmentation with 87% precision, but also retrieves reliable measurements, which can be used for medical assessment and healing evaluation of pressure injuries.


Assuntos
Aprendizado Profundo , Úlcera por Pressão , Humanos , Úlcera por Pressão/diagnóstico por imagem
5.
Sensors (Basel) ; 20(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764398

RESUMO

Breast cancer is one of the major public health issues and is considered a leading cause of cancer-related deaths among women worldwide. Its early diagnosis can effectively help in increasing the chances of survival rate. To this end, biopsy is usually followed as a gold standard approach in which tissues are collected for microscopic analysis. However, the histopathological analysis of breast cancer is non-trivial, labor-intensive, and may lead to a high degree of disagreement among pathologists. Therefore, an automatic diagnostic system could assist pathologists to improve the effectiveness of diagnostic processes. This paper presents an ensemble deep learning approach for the definite classification of non-carcinoma and carcinoma breast cancer histopathology images using our collected dataset. We trained four different models based on pre-trained VGG16 and VGG19 architectures. Initially, we followed 5-fold cross-validation operations on all the individual models, namely, fully-trained VGG16, fine-tuned VGG16, fully-trained VGG19, and fine-tuned VGG19 models. Then, we followed an ensemble strategy by taking the average of predicted probabilities and found that the ensemble of fine-tuned VGG16 and fine-tuned VGG19 performed competitive classification performance, especially on the carcinoma class. The ensemble of fine-tuned VGG16 and VGG19 models offered sensitivity of 97.73% for carcinoma class and overall accuracy of 95.29%. Also, it offered an F1 score of 95.29%. These experimental results demonstrated that our proposed deep learning approach is effective for the automatic classification of complex-natured histopathology images of breast cancer, more specifically for carcinoma images.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Redes Neurais de Computação
6.
Sensors (Basel) ; 20(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012932

RESUMO

This paper presents a real-time air quality monitoring system based on Internet of Things. Air quality is particularly relevant for enhanced living environments and well-being. The Environmental Protection Agency and the World Health Organization have acknowledged the material impact of air quality on public health and defined standards and policies to regulate and improve air quality. However, there is a significant need for cost-effective methods to monitor and control air quality which provide modularity, scalability, portability, easy installation and configuration features, and mobile computing technologies integration. The proposed method allows the measuring and mapping of air quality levels considering the spatial-temporal information. This system incorporates a cyber-physical system for data collection and mobile computing software for data consulting. Moreover, this method provides a cost-effective and efficient solution for air quality supervision and can be installed in vehicles to monitor air quality while travelling. The results obtained confirm the implementation of the system and present a relevant contribution to enhanced living environments in smart cities. This supervision solution provides real-time identification of unhealthy behaviours and supports the planning of possible interventions to increase air quality.

7.
Sensors (Basel) ; 20(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883006

RESUMO

The discrimination of non-focal class (NFC) and focal class (FC), is vital in localizing the epileptogenic zone (EZ) during neurosurgery. In the conventional diagnosis method, the neurologist has to visually examine the long hour electroencephalogram (EEG) signals, which consumes time and is prone to error. Hence, in this present work, automated diagnosis of FC EEG signals from NFC EEG signals is developed using the Fast Walsh-Hadamard Transform (FWHT) method, entropies, and artificial neural network (ANN). The FWHT analyzes the EEG signals in the frequency domain and decomposes it into the Hadamard coefficients. Five different nonlinear features, namely approximate entropy (ApEn), log-energy entropy (LogEn), fuzzy entropy (FuzzyEn), sample entropy (SampEn), and permutation entropy (PermEn) are extracted from the decomposed Hadamard coefficients. The extracted features detail the nonlinearity in the NFC and the FC EEG signals. The judicious entropy features are supplied to the ANN classifier, with a 10-fold cross-validation method to classify the NFC and FC classes. Two publicly available datasets such as the University of Bonn and Bern-Barcelona dataset are used to evaluate the proposed approach. A maximum sensitivity of 99.70%, the accuracy of 99.50%, and specificity of 99.30% with the 3750 pairs of NFC and FC signal are achieved using the Bern-Barcelona dataset, while the accuracy of 92.80%, the sensitivity of 91%, and specificity of 94.60% is achieved using University of Bonn dataset. Compared to the existing technique, the proposed approach attained a maximum classification performance in both the dataset.


Assuntos
Eletroencefalografia , Processamento de Sinais Assistido por Computador , Entropia , Redes Neurais de Computação , Procedimentos Neurocirúrgicos
8.
Sensors (Basel) ; 19(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925832

RESUMO

In this paper we analyze an experiment for the use of low-cost gas sensors intended to detect bacteria in wounds using a non-intrusive technique. Seven different genera/species of microbes tend to be present in most wound infections. Detection of these bacteria usually requires sample and laboratory testing which is costly, inconvenient and time-consuming. The validation processes for these sensors with nineteen types of microbes (1 Candida, 2 Enterococcus, 6 Staphylococcus, 1 Aeromonas, 1 Micrococcus, 2 E. coli and 6 Pseudomonas) are presented here, in which four sensors were evaluated: TGS-826 used for ammonia and amines, MQ-3 used for alcohol detection, MQ-135 for CO2 and MQ-138 for acetone detection. Validation was undertaken by studying the behavior of the sensors at different distances and gas concentrations. Preliminary results with liquid cultures of 108 CFU/mL and solid cultures of 108 CFU/cm2 of the 6 Pseudomonas aeruginosa strains revealed that the four gas sensors showed a response at a height of 5 mm. The ammonia detection response of the TGS-826 to Pseudomonas showed the highest responses for the experimental samples over the background signals, with a difference between the values ​​of up to 60 units in the solid samples and the most consistent and constant values. This could suggest that this sensor is a good detector of Pseudomonas aeruginosa, and the recording made of its values ​​could be indicative of the detection of this species. All the species revealed similar CO2 emission and a high response rate with acetone for Micrococcus, Aeromonas and Staphylococcus.


Assuntos
Gases/análise , Compostos Orgânicos Voláteis/química , Infecção dos Ferimentos/diagnóstico , Álcoois/análise , Amônia/análise , Candida/química , Candida/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Humanos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Compostos Orgânicos Voláteis/análise , Infecção dos Ferimentos/microbiologia
9.
Telemed J E Health ; 25(2): 152-159, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30256743

RESUMO

BACKGROUND: Ambulatory surgical procedures (ambulatory major surgery [AMS]), to which many people turn, do not require hospital admission. Patients may continue with their recovery from home on the same day they had surgery. OBJECTIVE: The main purpose of this article is to provide a technological solution that may enable nurses to control the evolution of a large number of patients in real time. METHODS: Java and Microsoft Band 2 SDK were used to program the mobile application (app), in contrast, Java, Hibernate, JSP, and Struts2 were used for the web app. The World Health Organization Quality Of Life (WHOQOL) and the System Usability Scale (SUS) questionnaires were applied for assessment purposes. IBM SPSS Statistics Data Editor was used for statistical analysis. Each test lasted 2 weeks, and the test itself involved completing the questionnaire about the patient's health using the mobile app. The average age of the individuals who took part in the study was 42.30 years, with a standard deviation of 17.63 years. RESULTS: The tests involved in this system were conducted at the Ambulatory Major Surgery Unit in the Basurto Hospital, Basque Country, Spain on 20 participants with an average of 42.30 years and a standard deviation of 17.63 years. The application obtained a good score on the SUS ( \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $$\overline{X}$$ \end{document} = 89.87 of 100, σ = 9.14). Using the WHOQOL questionnaire, the results were found better in the case of the patients' group than in the control group. CONCLUSION: Using a developed multiplatform mobile app, patients noted an improvement in the care provided in the case of day surgery. The web platform accessed by nurses to make consultations has been integrated into the app service provider, while the bracelet sends the data to the app which receives it and then sends it on to the database. Healthcare staff then check patients' condition.


Assuntos
Procedimentos Cirúrgicos Ambulatórios/métodos , Aplicativos Móveis , Monitorização Ambulatorial/métodos , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Telemedicina
10.
BMC Med Inform Decis Mak ; 17(1): 38, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28407777

RESUMO

BACKGROUND: Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. METHODS: We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. RESULTS: When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). CONCLUSIONS: The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.


Assuntos
Aprendizado de Máquina , Transtornos de Enxaqueca/classificação , Transtornos de Enxaqueca/diagnóstico , Adulto , Comitês Consultivos , Algoritmos , Diagnóstico por Computador , Imagem de Tensor de Difusão , Emoções , Feminino , Cefaleia , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/psicologia , Testes Neuropsicológicos , Reconhecimento Automatizado de Padrão , Máquina de Vetores de Suporte , Inquéritos e Questionários
11.
J Med Syst ; 41(12): 191, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29075920

RESUMO

Cardiovascular disease is the first cause of death and disease and one of the leading causes of disability in developed countries. The prevalence of this disease is expected to increase in coming years although the death rate may be lower due to better treatment. To present the design and development of a technology solution for primary prevention of cardiovascular disease in asymptomatic patients. The system aims to raise the population's awareness of the importance of adopting healthy heart habits by using self-feedback techniques. A series of sensors which makes it possible to detect cardiovascular risk factors in asymptomatic patients were used. These sensors enable evaluation of heart rate, blood pressure, SpO2 -oxygen saturation in blood- and body temperature. This work has developed a modular solution centred on four parts: iOS app, sensors, server and web. The CoreBluetooth library, which carries out Bluetooth 4.0 communication, was used for the connection between the app and the sensors. The data files are stored on the iPad and the server by using CoreData and SQL mechanisms. The system was validated with 20 healthy volunteers and 10 patients with established structural heart disease. Once the samples had been obtained, a comparison of all the significant data was run, in addition to a statistical analysis. The result of this calculation was a total of 32 cases of first level significance correlations (p < 0.01), for example, the inverse relationship between the daily step count and high blood pressure (p = 0.008) and 24 s level cases (p < 0.05) such as the significant correlation between risk and age (p = 0.013). The system designed in this paper has made it possible to create an application capable of collecting data on cardiovascular risk factors through a sensor system that measures physiological variables and records physical activity and diet.


Assuntos
Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/prevenção & controle , Tecnologia de Sensoriamento Remoto/métodos , Smartphone , Adolescente , Adulto , Pressão Sanguínea , Temperatura Corporal , Dieta , Diagnóstico Precoce , Exercício Físico , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Oximetria , Prevenção Primária , Fatores de Risco , Adulto Jovem
12.
Sensors (Basel) ; 15(5): 11092-117, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25985158

RESUMO

This study examines the use of eye tracking sensors as a means to identify children's behavior in attention-enhancement therapies. For this purpose, a set of data collected from 32 children with different attention skills is analyzed during their interaction with a set of puzzle games. The authors of this study hypothesize that participants with better performance may have quantifiably different eye-movement patterns from users with poorer results. The use of eye trackers outside the research community may help to extend their potential with available intelligent therapies, bringing state-of-the-art technologies to users. The use of gaze data constitutes a new information source in intelligent therapies that may help to build new approaches that are fully-customized to final users' needs. This may be achieved by implementing machine learning algorithms for classification. The initial study of the dataset has proven a 0.88 (±0.11) classification accuracy with a random forest classifier, using cross-validation and hierarchical tree-based feature selection. Further approaches need to be examined in order to establish more detailed attention behaviors and patterns among children with and without attention problems.


Assuntos
Atenção/fisiologia , Terapia Cognitivo-Comportamental/métodos , Movimentos Oculares/fisiologia , Fixação Ocular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Jogos de Vídeo , Algoritmos , Inteligência Artificial , Criança , Feminino , Humanos , Masculino
13.
Sensors (Basel) ; 15(3): 6520-48, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25789493

RESUMO

This paper presents a multi-sensor system for implementing biofeedback as a human-computer interaction technique in a game involving driving cars in risky situations. The sensors used are: Eye Tracker, Kinect, pulsometer, respirometer, electromiography (EMG) and galvanic skin resistance (GSR). An algorithm has been designed which gives rise to an interaction logic with the game according to the set of physiological constants obtained from the sensors. The results reflect a 72.333 response to the System Usability Scale (SUS), a significant difference of p = 0.026 in GSR values in terms of the difference between the start and end of the game, and an r = 0.659 and p = 0.008 correlation while playing with the Kinect between the breathing level and the energy and joy factor. All the sensors used had an impact on the end results, whereby none of them should be disregarded in future lines of research, even though it would be interesting to obtain separate breathing values from that of the cardio.


Assuntos
Condução de Veículo , Biorretroalimentação Psicológica , Eletromiografia , Tecnologia de Sensoriamento Remoto/métodos , Atenção/fisiologia , Humanos , Jogos de Vídeo
14.
Sensors (Basel) ; 14(2): 3362-94, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24556672

RESUMO

This article presents a review of the methods used in recognition and analysis of the human gait from three different approaches: image processing, floor sensors and sensors placed on the body. Progress in new technologies has led the development of a series of devices and techniques which allow for objective evaluation, making measurements more efficient and effective and providing specialists with reliable information. Firstly, an introduction of the key gait parameters and semi-subjective methods is presented. Secondly, technologies and studies on the different objective methods are reviewed. Finally, based on the latest research, the characteristics of each method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% corresponded to other wearable systems. An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis.

15.
Technol Health Care ; 31(6): 2401-2409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955067

RESUMO

BACKGROUND: Loneliness and social isolation are recognized as critical public health issues. Older people are at greater risk of loneliness and social isolation as they deal with things like living alone, loss of family or friends, chronic illness, and hearing loss. Loneliness increases a person's risk of premature death from all causes, including dementia, heart disease, and stroke. To address these issues, the inclusion of technological platforms and the use of commercial monitoring devices are vastly increasing in healthcare and elderly care. OBJECTIVE: The objective of this study is to design and develop a loneliness monitor serverless architecture to obtain real-time data from commercial activity wristbands through an Application Programming Interface. METHODS: For the design and development of the architecture, the Amazon Web Services platform has been used. To monitor loneliness, the Fitbit Charge 5 bracelet was selected. Through the web Application Programming Interface offered by the AWS Lambda service, the data is obtained and stored in AWS services with an automated frequency thanks to the event bridge. RESULTS: In the pilot stage in which the system is, it is showing great possibilities in the ease of collecting data and programming the sampling frequency. Once the request is made, the data is automatically analyzed to monitor loneliness. CONCLUSION: The proposed architecture shows great potential for easy data collection, analysis, security, personalization, real-time inference, and scalability of sensors and actuators in the future. It has powerful benefits to apply in the health sector and reduces cases of depression and loneliness.


Assuntos
Perda Auditiva , Solidão , Humanos , Idoso , Isolamento Social , Comunicação
16.
Soft comput ; 27(5): 2657-2672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33250662

RESUMO

The outbreaks of Coronavirus (COVID-19) epidemic have increased the pressure on healthcare and medical systems worldwide. The timely diagnosis of infected patients is a critical step to limit the spread of the COVID-19 epidemic. The chest radiography imaging has shown to be an effective screening technique in diagnosing the COVID-19 epidemic. To reduce the pressure on radiologists and control of the epidemic, fast and accurate a hybrid deep learning framework for diagnosing COVID-19 virus in chest X-ray images is developed and termed as the COVID-CheXNet system. First, the contrast of the X-ray image was enhanced and the noise level was reduced using the contrast-limited adaptive histogram equalization and Butterworth bandpass filter, respectively. This was followed by fusing the results obtained from two different pre-trained deep learning models based on the incorporation of a ResNet34 and high-resolution network model trained using a large-scale dataset. Herein, the parallel architecture was considered, which provides radiologists with a high degree of confidence to discriminate between the healthy and COVID-19 infected people. The proposed COVID-CheXNet system has managed to correctly and accurately diagnose the COVID-19 patients with a detection accuracy rate of 99.99%, sensitivity of 99.98%, specificity of 100%, precision of 100%, F1-score of 99.99%, MSE of 0.011%, and RMSE of 0.012% using the weighted sum rule at the score-level. The efficiency and usefulness of the proposed COVID-CheXNet system are established along with the possibility of using it in real clinical centers for fast diagnosis and treatment supplement, with less than 2 s per image to get the prediction result.

17.
J Imaging ; 9(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37504805

RESUMO

Cardiovascular diseases are among the major health problems that are likely to benefit from promising developments in quantum machine learning for medical imaging. The chest X-ray (CXR), a widely used modality, can reveal cardiomegaly, even when performed primarily for a non-cardiological indication. Based on pre-trained DenseNet-121, we designed hybrid classical-quantum (CQ) transfer learning models to detect cardiomegaly in CXRs. Using Qiskit and PennyLane, we integrated a parameterized quantum circuit into a classic network implemented in PyTorch. We mined the CheXpert public repository to create a balanced dataset with 2436 posteroanterior CXRs from different patients distributed between cardiomegaly and the control. Using k-fold cross-validation, the CQ models were trained using a state vector simulator. The normalized global effective dimension allowed us to compare the trainability in the CQ models run on Qiskit. For prediction, ROC AUC scores up to 0.93 and accuracies up to 0.87 were achieved for several CQ models, rivaling the classical-classical (CC) model used as a reference. A trustworthy Grad-CAM++ heatmap with a hot zone covering the heart was visualized more often with the QC option than that with the CC option (94% vs. 61%, p < 0.001), which may boost the rate of acceptance by health professionals.

18.
Sci Rep ; 12(1): 12259, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851592

RESUMO

A computer-aided diagnosis (CAD) system requires automated stages of tumor detection, segmentation, and classification that are integrated sequentially into one framework to assist the radiologists with a final diagnosis decision. In this paper, we introduce the final step of breast mass classification and diagnosis using a stacked ensemble of residual neural network (ResNet) models (i.e. ResNet50V2, ResNet101V2, and ResNet152V2). The work presents the task of classifying the detected and segmented breast masses into malignant or benign, and diagnosing the Breast Imaging Reporting and Data System (BI-RADS) assessment category with a score from 2 to 6 and the shape as oval, round, lobulated, or irregular. The proposed methodology was evaluated on two publicly available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, and additionally on a private dataset. Comparative experiments were conducted on the individual models and an average ensemble of models with an XGBoost classifier. Qualitative and quantitative results show that the proposed model achieved better performance for (1) Pathology classification with an accuracy of 95.13%, 99.20%, and 95.88%; (2) BI-RADS category classification with an accuracy of 85.38%, 99%, and 96.08% respectively on CBIS-DDSM, INbreast, and the private dataset; and (3) shape classification with 90.02% on the CBIS-DDSM dataset. Our results demonstrate that our proposed integrated framework could benefit from all automated stages to outperform the latest deep learning methodologies.


Assuntos
Neoplasias da Mama , Mamografia , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Progressão da Doença , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia/métodos , Redes Neurais de Computação
19.
Diagnostics (Basel) ; 12(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36010243

RESUMO

Our aim is to contribute to the classification of anomalous patterns in biosignals using this novel approach. We specifically focus on melanoma and heart murmurs. We use a comparative study of two convolution networks in the Complex and Real numerical domains. The idea is to obtain a powerful approach for building portable systems for early disease detection. Two similar algorithmic structures were chosen so that there is no bias determined by the number of parameters to train. Three clinical data sets, ISIC2017, PH2, and Pascal, were used to carry out the experiments. Mean comparison hypothesis tests were performed to ensure statistical objectivity in the conclusions. In all cases, complex-valued networks presented a superior performance for the Precision, Recall, F1 Score, Accuracy, and Specificity metrics in the detection of associated anomalies. The best complex number-based classifier obtained in the Receiving Operating Characteristic (ROC) space presents a Euclidean distance of 0.26127 with respect to the ideal classifier, as opposed to the best real number-based classifier, whose Euclidean distance to the ideal is 0.36022 for the same task of melanoma detection. The 27.46% superiority in this metric, as in the others reported in this work, suggests that complex-valued networks have a greater ability to extract features for more efficient discrimination in the dataset.

20.
Comput Methods Programs Biomed ; 221: 106884, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35594582

RESUMO

BACKGROUND AND OBJECTIVE: Computer-aided-detection (CAD) systems have been developed to assist radiologists on finding suspicious lesions in mammogram. Deep Learning technology have recently succeeded to increase the chance of recognizing abnormality at an early stage in order to avoid unnecessary biopsies and decrease the mortality rate. In this study, we investigated the effectiveness of an end-to-end fusion model based on You-Only-Look-Once (YOLO) architecture, to simultaneously detect and classify suspicious breast lesions on digital mammograms. Four categories of cases were included: Mass, Calcification, Architectural Distortions, and Normal from a private digital mammographic database including 413 cases. For all cases, Prior mammograms (typically scanned 1 year before) were all reported as Normal, while Current mammograms were diagnosed as cancerous (confirmed by biopsies) or healthy. METHODS: We propose to apply the YOLO-based fusion model to the Current mammograms for breast lesions detection and classification. Then apply the same model retrospectively to synthetic mammograms for an early cancer prediction, where the synthetic mammograms were generated from the Prior mammograms by using the image-to-image translation models, CycleGAN and Pix2Pix. RESULTS: Evaluation results showed that our methodology could significantly detect and classify breast lesions on Current mammograms with a highest rate of 93% ± 0.118 for Mass lesions, 88% ± 0.09 for Calcification lesions, and 95% ± 0.06 for Architectural Distortion lesions. In addition, we reported evaluation results on Prior mammograms with a highest rate of 36% ± 0.01 for Mass lesions, 14% ± 0.01 for Calcification lesions, and 50% ± 0.02 for Architectural Distortion lesions. Normal mammograms were accordingly classified with an accuracy rate of 92% ± 0.09 and 90% ± 0.06 respectively on Current and Prior exams. CONCLUSIONS: Our proposed framework was first developed to help detecting and identifying suspicious breast lesions in X-ray mammograms on their Current screening. The work was also suggested to reduce the temporal changes between pairs of Prior and follow-up screenings for early predicting the location and type of abnormalities in Prior mammogram screening. The paper presented a CAD method to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep learning and image-to-image translation for a biomedical application.


Assuntos
Neoplasias da Mama , Calcinose , Neoplasias da Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Diagnóstico por Computador , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA