Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(3): 164, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35229202

RESUMO

Alternative polyadenylation in the 3' UTR (3' UTR-APA) is a mode of gene expression regulation, fundamental for mRNA stability, translation and localization. In the immune system, it was shown that upon T cell activation, there is an increase in the relative expression of mRNA isoforms with short 3' UTRs resulting from 3' UTR-APA. However, the functional significance of 3' UTR-APA remains largely unknown. Here, we studied the physiological function of 3' UTR-APA in the regulation of Myeloid Cell Leukemia 1 (MCL1), an anti-apoptotic member of the Bcl-2 family essential for T cell survival. We found that T cells produce two MCL1 mRNA isoforms (pA1 and pA2) by 3' UTR-APA. We show that upon T cell activation, there is an increase in both the shorter pA1 mRNA isoform and MCL1 protein levels. Moreover, the less efficiently translated pA2 isoform is downregulated by miR-17, which is also more expressed upon T cell activation. Therefore, by increasing the expression of the more efficiently translated pA1 mRNA isoform, which escapes regulation by miR-17, 3' UTR-APA fine tunes MCL1 protein levels, critical for activated T cells' survival. Furthermore, using CRISPR/Cas9-edited cells, we show that depletion of either pA1 or pA2 mRNA isoforms causes severe defects in mitochondria morphology, increases apoptosis and impacts cell proliferation. Collectively, our results show that MCL1 alternative polyadenylation has a key role in the regulation of MCL1 protein levels upon T cell activation and reveal an essential function for MCL1 3' UTR-APA in cell viability and mitochondria dynamics.


Assuntos
Ativação Linfocitária , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Poliadenilação , Linfócitos T/metabolismo , Sobrevivência Celular , Humanos , Células Jurkat , Isoformas de RNA , Linfócitos T/fisiologia
2.
Front Bioeng Biotechnol ; 12: 1355957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380261

RESUMO

The biotechnological landscape has witnessed significant growth in biological therapeutics particularly in the field of recombinant protein production. Here we investigate the function of 3'UTR cis-regulatory elements in increasing mRNA and protein levels in different biological therapeutics and model systems, spanning from monoclonal antibodies to mRNA vaccines. We explore the regulatory function of iPLUS - a universal sequence capable of consistently augmenting recombinant protein levels. By incorporating iPLUS in a vector to express a monoclonal antibody used in immunotherapy, in a mammalian cell line used by the industry (ExpiCHO), trastuzumab production increases by 2-fold. As yeast Pichia pastoris is widely used in the manufacture of industrial enzymes and pharmaceuticals, we then used iPLUS in tandem (3x) and iPLUSv2 (a variant of iPLUS) to provide proof-of-concept data that it increases the production of a reporter protein more than 100-fold. As iPLUS functions by also increasing mRNA levels, we hypothesize that these sequences could be used as an asset in the mRNA vaccine industry. In fact, by including iPLUSv2 downstream of Spike we were able to double its production. Moreover, the same effect was observed when we introduced iPLUSv2 downstream of MAGEC2, a tumor-specific antigen tested for cancer mRNA vaccines. Taken together, our study provides data (TLR4) showing that iPLUS may be used as a valuable asset in a variety of systems used by the biotech and biopharmaceutical industry. Our results underscore the critical role of non-coding sequences in controlling gene expression, offering a promising avenue to accelerate, enhance, and cost-effectively optimize biopharmaceutical production processes.

3.
Mycopathologia ; 161(3): 161-5, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16482388

RESUMO

Histoplasmosis is a fungal infection caused by the Histoplasma capsulatum. Mucosal manifestations are uncommon, but, when present, they are usually associated with pulmonary or chronic disseminated infection. The course of the disease is often related to the host immune response. The purpose of this article is to describe the clinical and microscopic findings of unusual involvement of nasal cartilage and septal destruction, and oral lesions of histoplasmosis in an immunosuppressed patient who presented an unusual form of the disease.


Assuntos
Histoplasma/crescimento & desenvolvimento , Histoplasmose/imunologia , Hospedeiro Imunocomprometido/imunologia , Transplante de Rim/imunologia , Septo Nasal/patologia , Adulto , Antifúngicos/uso terapêutico , Dermatoses Faciais/tratamento farmacológico , Dermatoses Faciais/imunologia , Dermatoses Faciais/microbiologia , Histocitoquímica , Histoplasmose/tratamento farmacológico , Histoplasmose/microbiologia , Humanos , Masculino , Mucosa Nasal/microbiologia , Mucosa Nasal/patologia , Septo Nasal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA