Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(2): 751-6, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21177428

RESUMO

Sphingosine 1-phosphate (S1P), a lysophospholipid, has gained relevance to multiple sclerosis through the discovery of FTY720 (fingolimod), recently approved as an oral treatment for relapsing forms of multiple sclerosis. Its mechanism of action is thought to be immunological through an active phosphorylated metabolite, FTY720-P, that resembles S1P and alters lymphocyte trafficking through receptor subtype S1P(1). However, previously reported expression and in vitro studies of S1P receptors suggested that direct CNS effects of FTY720 might theoretically occur through receptor modulation on neurons and glia. To identify CNS cells functionally contributing to FTY720 activity, genetic approaches were combined with cellular and molecular analyses. These studies relied on the functional assessment, based on clinical score, of conditional null mouse mutants lacking S1P(1) in CNS cell lineages and challenged by experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. All conditional null mutants displayed WT lymphocyte trafficking that responded normally to FTY720. In marked contrast, EAE was attenuated and FTY720 efficacy was lost in CNS mutants lacking S1P(1) on GFAP-expressing astrocytes but not on neurons. In situ hybridization studies confirmed that astrocyte loss of S1P(1) was the key alteration in functionally affected mutants. Reductions in EAE clinical scores were paralleled by reductions in demyelination, axonal loss, and astrogliosis. Receptor rescue and pharmacological experiments supported the loss of S1P(1) on astrocytes through functional antagonism by FTY720-P as a primary FTY720 mechanism. These data identify nonimmunological CNS mechanisms of FTY720 efficacy and implicate S1P signaling pathways within the CNS as targets for multiple sclerosis therapies.


Assuntos
Astrócitos/citologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Regulação da Expressão Gênica , Esclerose Múltipla/tratamento farmacológico , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Cloridrato de Fingolimode , Imunossupressores/farmacologia , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Esfingosina/farmacologia
2.
Glia ; 61(12): 2009-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115248

RESUMO

Schwann cell (SC) migration is an important step preceding myelination and remyelination in the peripheral nervous system, and can be promoted by peptide factors like neuregulins. Here we present evidence that a lipid factor, lysophosphatidic acid (LPA), influences both SC migration and peripheral myelination through its cognate G protein-coupled receptor (GPCR) known as LPA1 . Ultrastructural analyses of peripheral nerves in mouse null-mutants for LPA1 showed delayed SC-to-axon segregation, polyaxonal myelination by single SCs, and thinner myelin sheaths. In primary cultures, LPA promoted SC migration through LPA1 , while analysis of conditioned media from purified dorsal root ganglia neurons using HPLC/MS supported the production of LPA by these neurons. The heterotrimeric G-alpha protein, Gαi , and the small GTPase, Rac1, were identified as important downstream signaling components of LPA1 . These results identify receptor mediated LPA signaling between neurons and SCs that promote SC migration and contribute to the normal development of peripheral nerves through effects on SC-axon segregation and myelination.


Assuntos
Axônios/metabolismo , Movimento Celular/fisiologia , Lisofosfolipídeos/farmacologia , Bainha de Mielina/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Células de Schwann/metabolismo , Animais , Axônios/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Camundongos , Bainha de Mielina/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
3.
Trends Mol Med ; 12(2): 65-75, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16406843

RESUMO

The two lysophospholipids (LPs) lysophosphatidic acid and sphingosine 1-phosphate (S1P) regulate diverse biological processes. Over the past decade, it has become clear that medically relevant LP activities are mediated by specific G protein-coupled receptors, implicating them in the etiology of a growing number of disorders. A new class of LP agonists shows promise for drug therapy: the experimental drug FTY720 is phosphorylated in vivo to produce a potent S1P receptor agonist (FTY720-P) and is currently in Phase III clinical trials for kidney transplantation and Phase II for multiple sclerosis. Recent genetic and pharmacological studies on LP signaling in animal disease models have identified new areas in which interventions in LP signaling might provide novel therapeutic approaches for the treatment of human diseases.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Lisofosfolipídeos/fisiologia , Receptores de Ácidos Lisofosfatídicos/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/efeitos dos fármacos , Transdução de Sinais , Animais , Doenças Autoimunes/imunologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/imunologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Obesidade/tratamento farmacológico , Obesidade/imunologia , Fosforilação , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores de Ácidos Lisofosfatídicos/agonistas , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Esfingosina/análogos & derivados , Esfingosina/fisiologia , Imunologia de Transplantes
4.
J Biol Chem ; 283(12): 7470-9, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18198181

RESUMO

Lysophosphatidic acid (LPA) is a simple phospholipid derived from cell membranes that has extracellular signaling properties mediated by at least five G protein-coupled receptors referred to as LPA(1)-LPA(5). In the nervous system, receptor-mediated LPA signaling has been demonstrated to influence a range of cellular processes; however, an unaddressed aspect of LPA signaling is its potential to produce specific secondary effects, whereby LPA receptor-expressing cells exposed to, or "primed," by LPA may then act on other cells via distinct, yet LPA-initiated, mechanisms. In the present study, we examined cerebral cortical astrocytes as possible indirect mediators of the effects of LPA on developing cortical neurons. Cultured astrocytes express at least four LPA receptor subtypes, known as LPA(1)-LPA(4). Cerebral cortical astrocytes primed by LPA exposure were found to increase neuronal differentiation of cortical progenitor cells. Treatment of unprimed astrocyte-progenitor cocultures with conditioned medium derived from LPA-primed astrocytes yielded similar results, suggesting the involvement of an astrocyte-derived soluble factor induced by LPA. At least two LPA receptor subtypes are involved in LPA priming, since the priming effect was lost in astrocytes derived from LPA receptor double-null mice (LPA(1)((-/-))/LPA(2)((-/-))). Moreover, the loss of LPA-dependent differentiation in receptor double-null astrocytes could be rescued by retrovirally transduced expression of a single deleted receptor. These data demonstrate that receptor-mediated LPA signaling in astrocytes can induce LPA-dependent, indirect effects on neuronal differentiation.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Receptores de Ácidos Lisofosfatídicos/genética , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA