Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38112569

RESUMO

Mounting evidence suggests considerable diversity in brain aging trajectories, primarily arising from the complex interplay between age, genetic, and environmental risk factors, leading to distinct patterns of micro- and macro-cerebral aging. The underlying mechanisms of such effects still remain unclear. We conducted a comprehensive association analysis between cerebral structural measures and prevalent risk factors, using data from 36,969 UK Biobank subjects aged 44-81. Participants were assessed for brain volume, white matter diffusivity, Apolipoprotein E (APOE) genotypes, polygenic risk scores, lifestyles, and socioeconomic status. We examined genetic and environmental effects and their interactions with age and sex, and identified 726 signals, with education, alcohol, and smoking affecting most brain regions. Our analysis revealed negative age-APOE-ε4 and positive age-APOE-ε2 interaction effects, respectively, especially in females on the volume of amygdala, positive age-sex-APOE-ε4 interaction on the cerebellar volume, positive age-excessive-alcohol interaction effect on the mean diffusivity of the splenium of the corpus callosum, positive age-healthy-diet interaction effect on the paracentral volume, and negative APOE-ε4-moderate-alcohol interaction effects on the axial diffusivity of the superior fronto-occipital fasciculus. These findings highlight the need of considering age, sex, genetic, and environmental joint effects in elucidating normal or abnormal brain aging.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Feminino , Humanos , Envelhecimento/genética , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagem , Genótipo , Fatores de Risco
2.
Nucleic Acids Res ; 51(D1): D1075-D1085, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318260

RESUMO

Scalable technologies to sequence the transcriptomes and epigenomes of single cells are transforming our understanding of cell types and cell states. The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) is applying these technologies at unprecedented scale to map the cell types in the mammalian brain. In an effort to increase data FAIRness (Findable, Accessible, Interoperable, Reusable), the NIH has established repositories to make data generated by the BICCN and related BRAIN Initiative projects accessible to the broader research community. Here, we describe the Neuroscience Multi-Omic Archive (NeMO Archive; nemoarchive.org), which serves as the primary repository for genomics data from the BRAIN Initiative. Working closely with other BRAIN Initiative researchers, we have organized these data into a continually expanding, curated repository, which contains transcriptomic and epigenomic data from over 50 million brain cells, including single-cell genomic data from all of the major regions of the adult and prenatal human and mouse brains, as well as substantial single-cell genomic data from non-human primates. We make available several tools for accessing these data, including a searchable web portal, a cloud-computing interface for large-scale data processing (implemented on Terra, terra.bio), and a visualization and analysis platform, NeMO Analytics (nemoanalytics.org).


Assuntos
Encéfalo , Bases de Dados Genéticas , Epigenômica , Multiômica , Transcriptoma , Animais , Camundongos , Genômica , Mamíferos , Primatas , Encéfalo/citologia , Encéfalo/metabolismo
3.
J Neuroinflammation ; 20(1): 60, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36879321

RESUMO

Alzheimer's Disease (AD) is characterized by the accumulation of extracellular amyloid-ß (Aß) as well as CNS and systemic inflammation. Microglia, the myeloid cells resident in the CNS, use microRNAs to rapidly respond to inflammatory signals. MicroRNAs (miRNAs) modulate inflammatory responses in microglia, and miRNA profiles are altered in Alzheimer's disease (AD) patients. Expression of the pro-inflammatory miRNA, miR-155, is increased in the AD brain. However, the role of miR-155 in AD pathogenesis is not well-understood. We hypothesized that miR-155 participates in AD pathophysiology by regulating microglia internalization and degradation of Aß. We used CX3CR1CreER/+ to drive-inducible, microglia-specific deletion of floxed miR-155 alleles in two AD mouse models. Microglia-specific inducible deletion of miR-155 in microglia increased anti-inflammatory gene expression while reducing insoluble Aß1-42 and plaque area. Yet, microglia-specific miR-155 deletion led to early-onset hyperexcitability, recurring spontaneous seizures, and seizure-related mortality. The mechanism behind hyperexcitability involved microglia-mediated synaptic pruning as miR-155 deletion altered microglia internalization of synaptic material. These data identify miR-155 as a novel modulator of microglia Aß internalization and synaptic pruning, influencing synaptic homeostasis in the setting of AD pathology.


Assuntos
Doença de Alzheimer , MicroRNAs , Animais , Camundongos , Doença de Alzheimer/genética , Microglia , Peptídeos beta-Amiloides , Convulsões , Modelos Animais de Doenças , MicroRNAs/genética
4.
Immunity ; 41(4): 605-19, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25367574

RESUMO

Chronic inflammation is a contributing factor to most life-shortening human diseases. However, the molecular and cellular mechanisms that sustain chronic inflammatory responses remain poorly understood, making it difficult to treat this deleterious condition. Using a mouse model of age-dependent inflammation that results from a deficiency in miR-146a, we demonstrate that miR-155 contributed to the progressive inflammatory disease that emerged as Mir146a(-/-) mice grew older. Upon analyzing lymphocytes from inflamed versus healthy middle-aged mice, we found elevated numbers of T follicular helper (Tfh) cells, germinal center (GC) B cells, and autoantibodies, all occurring in a miR-155-dependent manner. Further, Cd4-cre Mir155(fl/fl) mice were generated and demonstrated that miR-155 functions in T cells, in addition to its established role in B cells, to promote humoral immunity in a variety of contexts. Taken together, our study discovers that miR-146a and miR-155 counterregulate Tfh cell development that drives aberrant GC reactions during chronic inflammation.


Assuntos
Centro Germinativo/imunologia , Inflamação/imunologia , MicroRNAs/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Linfócitos B/imunologia , Antígenos CD4/biossíntese , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Antígeno 2 Relacionado a Fos/genética , Centro Germinativo/citologia , Imunidade Humoral , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Interferência de RNA , RNA Interferente Pequeno
5.
J Neurosci ; 41(38): 7942-7953, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34380760

RESUMO

Microglia maintain brain health and play important roles in disease and injury. Despite the known ability of microglia to proliferate, the precise nature of the population or populations capable of generating new microglia in the adult brain remains controversial. We identified Prominin-1 (Prom1; also known as CD133) as a putative cell surface marker of committed brain myeloid progenitor cells. We demonstrate that Prom1-expressing cells isolated from mixed cortical cultures will generate new microglia in vitro To determine whether Prom1-expressing cells generate new microglia in vivo, we used tamoxifen inducible fate mapping in male and female mice. Induction of Cre recombinase activity at 10 weeks in Prom1-expressing cells leads to the expression of TdTomato in all Prom1-expressing progenitors and newly generated daughter cells. We observed a population of new TdTomato-expressing microglia at 6 months of age that increased in size at 9 months. When microglia proliferation was induced using a transient ischemia/reperfusion paradigm, little proliferation from the Prom1-expressing progenitors was observed with the majority of new microglia derived from Prom1-negative cells. Together, these findings reveal that Prom1-expressing myeloid progenitor cells contribute to the generation of new microglia both in vitro and in vivo Furthermore, these findings demonstrate the existence of an undifferentiated myeloid progenitor population in the adult mouse brain that expresses Prom1. We conclude that Prom1-expressing myeloid progenitors contribute to new microglia genesis in the uninjured brain but not in response to ischemia/reperfusion.SIGNIFICANCE STATEMENT Microglia, the innate immune cells of the CNS, can divide to slowly generate new microglia throughout life. Newly generated microglia may influence inflammatory responses to injury or neurodegeneration. However, the origins of the new microglia in the brain have been controversial. Our research demonstrates that some newly born microglia in a healthy brain are derived from cells that express the stem cell marker Prominin-1. This is the first time Prominin-1 cells are shown to generate microglia.


Assuntos
Antígeno AC133/metabolismo , Encéfalo/citologia , Diferenciação Celular/fisiologia , Microglia/citologia , Animais , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Feminino , Masculino , Camundongos , Microglia/metabolismo
6.
Glia ; 69(7): 1736-1748, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33694209

RESUMO

Microglia are the innate immune cells of the central nervous system that adopt rapid functional changes in response to Damage Associated Molecular Patterns, including aggregated ß-Amyloid (Aß) found in Alzheimer's disease (AD). microRNAs (miRNAs) are post-transcriptional modulators that influence the timing and magnitude of microglia inflammatory responses by downregulating the expression of inflammatory effectors. Recent studies implicate miR-155, a miRNA known to regulate inflammatory responses, in the pathogenesis of neurodegenerative disorders including multiple sclerosis, ALS, familial Parkinson's disease, and AD. In this work, we asked if miR-155 expression in microglia modifies cellular behaviors in response to fibrillar Aß1-42 (fAß1-42 ), in vitro. We hypothesized that in microglia, miR-155 expression would impact the internalization and catabolism of extracellular fAß1-42 . Primary microglia stimulated with lipopolysaccharide demonstrate fast upregulation of miR-155 followed by delayed upregulation of miR-146a, an anti-inflammatory miRNA. Conditional overexpression of miR-155 in microglia resulted in significant upregulation of miR-146a. Conditional deletion of miR-155 promoted transit of fAß1-42 to low-pH compartments where catabolism occurs, while miR-155 overexpression decreases fAß1-42 catabolism. Uptake of fAß1-42 across the plasma membrane increased with both up and downregulation of miR-155 expression. Taken together, our results support the hypothesis that inflammatory signaling influences the ability of microglia to catabolize fAß1-42 through interconnected mechanisms modulated by miR-155. Understanding how miRNAs modulate the ability of microglia to catabolize fAß1-42 will further elucidate the role of cellular players and molecular crosstalk in AD pathophysiology.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo
7.
Glia ; 68(1): 76-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420975

RESUMO

Ischemic preconditioning (IPC) is an experimental phenomenon in which a subthreshold ischemic insult applied to the brain reduces damage caused by a subsequent more severe ischemic episode. Identifying key molecular and cellular mediators of IPC will provide critical information needed to develop novel therapies for stroke. Here we report that the transcriptomic response of acutely isolated preconditioned cortical microglia is dominated by marked upregulation of genes involved in cell cycle activation and cellular proliferation. Notably, this transcriptional response occurs in the absence of cortical infarction. We employed ex vivo flow cytometry, immunofluorescent microscopy, and quantitative stereology methods on brain tissue to evaluate microglia proliferation following IPC. Using cellular colocalization of microglial (Iba1) and proliferation (Ki67 and BrdU) markers, we observed a localized increase in the number of microglia and proliferating microglia within the preconditioned hemicortex at 72, but not 24, hours post-IPC. Our quantification demonstrated that the IPC-induced increase in total microglia was due entirely to proliferation. Furthermore, microglia in the preconditioned hemisphere had altered morphology and increased soma volumes, indicative of an activated phenotype. Using transgenic mouse models with either fractalkine receptor (CX3CR1)-haploinsufficiency or systemic type I interferon signaling loss, we determined that microglial proliferation after IPC is dependent on fractalkine signaling but independent of type I interferon signaling. These findings suggest there are multiple distinct targetable signaling pathways in microglia, including CX3CR1-dependent proliferation that may be involved in IPC-mediated protection.


Assuntos
Ciclo Celular/fisiologia , Córtex Cerebral/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Precondicionamento Isquêmico/métodos , Microglia/metabolismo , Transcriptoma/fisiologia , Animais , Proliferação de Células/fisiologia , Córtex Cerebral/patologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Glia ; 64(10): 1755-71, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27228454

RESUMO

There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771.


Assuntos
Biomarcadores/metabolismo , Doenças do Sistema Nervoso Central/patologia , Neuroglia/metabolismo , Doenças do Sistema Nervoso Central/terapia , Humanos
9.
Glia ; 64(10): 1788-94, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27246804

RESUMO

Minocycline, a second generation broad-spectrum antibiotic, has been frequently postulated to be a "microglia inhibitor." A considerable number of publications have used minocycline as a tool and concluded, after achieving a pharmacological effect, that the effect must be due to "inhibition" of microglia. It is, however, unclear how this "inhibition" is achieved at the molecular and cellular levels. Here, we weigh the evidence whether minocycline is indeed a bona fide microglia inhibitor and discuss how data generated with minocycline should be interpreted. GLIA 2016;64:1788-1794.


Assuntos
Antibacterianos/farmacologia , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Animais , Antibacterianos/uso terapêutico , Bases de Dados Factuais/estatística & dados numéricos , Humanos , Microglia/fisiologia , Minociclina/uso terapêutico
10.
J Neurochem ; 136 Suppl 1: 49-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25708596

RESUMO

Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.


Assuntos
Técnicas de Cultura de Células/métodos , Dependovirus/genética , Vetores Genéticos/genética , Microglia/fisiologia , Transdução Genética/métodos , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Brain Behav Immun ; 52: 1-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26148445

RESUMO

MicroRNAs (miRNAs) are a family of small non-coding RNAs (~22 nucleotides) that fine-tune protein expression by either silencing mRNA translation or directly targeting gene transcripts for degradation. In the central nervous system (CNS), neuroinflammation plays a critical role in brain injury and neurodegeneration. Increasing evidence supports the involvement of miRNAs as key regulators of neuroinflammation. Altered expression or function of particular miRNAs has been identified in various CNS pathological conditions, including neuroinflammation, neurodegeneration, and autoimmune diseases. Several miRNAs have been shown to play a critical role in the microglia-mediated inflammatory response including miR-155 and miR-146a. In this review, we summarize recent advances in the field of miRNAs associated with CNS inflammation, including our studies of unique inflammatory pathways involving miR-155 and miR-146a. We discuss how specific miRNAs influence microglia activation states in response to inflammatory stimuli, and describe the potential of miRNAs as both biomarkers of inflammation and therapeutic tools for the modulation of microglia behavior.


Assuntos
Doenças do Sistema Nervoso Central/genética , Inflamação/genética , MicroRNAs/genética , Microglia/metabolismo , Animais , Biomarcadores/líquido cefalorraquidiano , Doenças do Sistema Nervoso Central/líquido cefalorraquidiano , Doenças do Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/líquido cefalorraquidiano , Inflamação/metabolismo , MicroRNAs/líquido cefalorraquidiano , MicroRNAs/metabolismo
12.
Crit Rev Immunol ; 35(5): 401-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26853851

RESUMO

The tumor-suppressor protein p53 belongs to a family of proteins that play pivotal roles in multiple cellular functions including cell proliferation, cell death, genome stability, and regulation of inflammation. Neuroinflammation is a common feature of central nervous system (CNS) pathology, and microglia are the specialized resident population of CNS myeloid cells that initiate innate immune responses. Microglia maintain CNS homeostasis through pathogen containment, phagocytosis of debris, and initiation of tissue-repair cascades. However, an unregulated pro-inflammatory response can lead to tissue injury and dysfunction in both acute and chronic inflammatory states. Therefore, regulation of the molecular signals that control the induction, magnitude, and resolution of inflammation are necessary for optimal CNS health. We and others have described a novel mechanism by which p53 transcriptional activity modulates microglia behaviors in vitro and in vivo. Activation of p53 induces expression of microRNAs (miRNAs) that support microglia pro-inflammatory functions and suppress anti-inflammatory and tissue repair behaviors. In this review, we introduce the previously described roles of the p53 signaling network and discuss novel functions of p53 in the microglia-mediated inflammatory response in CNS health and disease. Ultimately, improved understanding of the molecular regulators modulated by p53 transcriptional activity in microglia will enhance the development of rational therapeutic strategies to harness the homeostatic and tissue repair functions of microglia.


Assuntos
Microglia/fisiologia , Inflamação Neurogênica/imunologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Redes Reguladoras de Genes , Humanos , Ativação Transcricional
13.
J Immunol ; 192(1): 358-66, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24319262

RESUMO

Neuroinflammation occurs in acute and chronic CNS injury, including stroke, traumatic brain injury, and neurodegenerative diseases. Microglia are specialized resident myeloid cells that mediate CNS innate immune responses. Disease-relevant stimuli, such as reactive oxygen species (ROS), can influence microglia activation. Previously, we observed that p53, a ROS-responsive transcription factor, modulates microglia behaviors in vitro and in vivo, promoting proinflammatory functions and suppressing downregulation of the inflammatory response and tissue repair. In this article we describe a novel mechanism by which p53 modulates the functional differentiation of microglia both in vitro and in vivo. Adult microglia from p53-deficient mice have increased expression of the anti-inflammatory transcription factor c-Maf. To determine how p53 negatively regulates c-Maf, we examined the impact of p53 on known c-Maf regulators. MiR-155 is a microRNA that targets c-Maf. We observed that cytokine-induced expression of miR-155 was suppressed in p53-deficient microglia. Furthermore, Twist2, a transcriptional activator of c-Maf, is increased in p53-deficient microglia. We identified recognition sites in the 3' untranslated region of Twist2 mRNA that are predicted to interact with two p53-dependent microRNAs: miR-34a and miR-145. In this article, we demonstrate that miR-34a and -145 are regulated by p53 and negatively regulate Twist2 and c-Maf expression in microglia and the RAW macrophage cell line. Taken together, these findings support the hypothesis that p53 activation induced by local ROS or accumulated DNA damage influences microglia functions and that one specific molecular target of p53 in microglia is c-Maf.


Assuntos
MicroRNAs/genética , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-maf/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Modelos Biológicos , Fenótipo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
14.
J Immunol ; 193(4): 1895-910, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25031461

RESUMO

The innate immune system has been implicated in several neurodegenerative diseases, including HIV-1-associated dementia. In this study, we show that genetic ablation of CCR5 prevents microglial activation and neuronal damage in a transgenic model of HIV-associated brain injury induced by a CXCR4-using viral envelope gp120. The CCR5 knockout (KO) also rescues spatial learning and memory in gp120-transgenic mice. However, the CCR5KO does not abrogate astrocytosis, indicating it can occur independently from neuronal injury and behavioral impairment. To characterize further the neuroprotective effect of CCR5 deficiency we performed a genome-wide gene expression analysis of brains from HIVgp120tg mice expressing or lacking CCR5 and nontransgenic controls. A comparison with a human brain microarray study reveals that brains of HIVgp120tg mice and HIV patients with neurocognitive impairment share numerous differentially regulated genes. Furthermore, brains of CCR5 wild-type and CCR5KO gp120tg mice express markers of an innate immune response. One of the most significantly upregulated factors is the acute phase protein lipocalin-2 (LCN2). Using cerebrocortical cell cultures, we find that LCN2 is neurotoxic in a CCR5-dependent fashion, whereas inhibition of CCR5 alone is not sufficient to abrogate neurotoxicity of a CXCR4-using gp120. However, the combination of pharmacologic CCR5 blockade and LCN2 protects neurons from toxicity of a CXCR4-using gp120, thus recapitulating the finding in CCR5-deficient gp120tg mouse brain. Our study provides evidence for an indirect pathologic role of CCR5 and a novel protective effect of LCN2 in combination with inhibition of CCR5 in HIV-associated brain injury.


Assuntos
Complexo AIDS Demência/genética , Proteínas de Fase Aguda/metabolismo , Proteína gp120 do Envelope de HIV/genética , HIV-1 , Lipocalinas/metabolismo , Proteínas Oncogênicas/metabolismo , Receptores CCR5/genética , Proteínas de Fase Aguda/biossíntese , Animais , Antagonistas dos Receptores CCR5 , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Gliose , Lipocalina-2 , Lipocalinas/biossíntese , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Knockout , Microglia/patologia , Proteínas Oncogênicas/biossíntese , Receptores CCR5/biossíntese , Receptores CXCR4/metabolismo , Transdução de Sinais/genética
15.
Brain ; 138(Pt 7): 2005-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981964

RESUMO

Endophilin-B1, also known as Bax-interacting factor 1 (Bif-1, and encoded by SH3GLB1), is a multifunctional protein involved in apoptosis, autophagy and mitochondrial function. We recently described a unique neuroprotective role for neuron-specific alternatively spliced isoforms of endophilin-B1. To examine whether endophilin-B1-mediated neuroprotection could be a novel therapeutic target for Alzheimer's disease we used a double mutant amyloid precursor protein and presenilin 1 (APPswe/PSEN1dE9) mouse model of Alzheimer's disease and observed that expression of neuron-specific endophilin-B1 isoforms declined with disease progression. To determine if this reduction in endophilin-B1 has a functional role in Alzheimer's disease pathogenesis, we crossed endophilin-B1(-/-) mice with APPswe/PSEN1dE9 mice. Deletion of endophilin-B1 accelerated disease onset and progression in 6-month-old APPswe/PSEN1dE9/endophilin-B1(-/-) mice, which showed more plaques, astrogliosis, synaptic degeneration, cognitive impairment and mortality than APPswe/PSEN1dE9 mice. In mouse primary cortical neuron cultures, overexpression of neuron-specific endophilin-B1 isoforms protected against amyloid-ß-induced apoptosis and mitochondrial dysfunction. Additionally, protein and mRNA levels of neuron-specific endophilin-B1 isoforms were also selectively decreased in the cerebral cortex and in the synaptic compartment of patients with Alzheimer's disease. Flow sorting of synaptosomes from patients with Alzheimer's disease demonstrated a negative correlation between amyloid-ß and endophilin-B1 levels. The importance of endophilin-B1 in neuronal function was further underscored by the development of synaptic degeneration and cognitive and motor impairment in endophilin-B1(-/-) mice by 12 months. Our findings suggest that endophilin-B1 is a key mediator of a feed-forward mechanism of Alzheimer's disease pathogenesis where amyloid-ß reduces neuron-specific endophilin-B1, which in turn enhances amyloid-ß accumulation and neuronal vulnerability to stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Neurônios/patologia , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinaptossomos/metabolismo , Sinaptossomos/patologia
16.
J Neurosci ; 34(7): 2674-83, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24523556

RESUMO

Bax-interacting factor 1 (Bif-1, also known as endophilin B1) is a multifunctional protein involved in the regulation of apoptosis, mitochondrial morphology, and autophagy. Previous studies in non-neuronal cells have shown that Bif-1 is proapoptotic and promotes mitochondrial fragmentation. However, the role of Bif-1 in postmitotic neurons has not been investigated. In contrast to non-neuronal cells, we now report that in neurons Bif-1 promotes viability and mitochondrial elongation. In mouse primary cortical neurons, Bif-1 knockdown exacerbated apoptosis induced by the DNA-damaging agent camptothecin. Neurons from Bif-1-deficient mice contained fragmented mitochondria and Bif-1 knockdown in wild-type neurons also resulted in fragmented mitochondria which were more depolarized, suggesting mitochondrial dysfunction. During ischemic stroke, Bif-1 expression was downregulated in the penumbra of wild-type mice. Consistent with Bif-1 being required for neuronal viability, Bif-1-deficient mice developed larger infarcts and an exaggerated astrogliosis response following ischemic stroke. Together, these data suggest that, in contrast to non-neuronal cells, Bif-1 is essential for the maintenance of mitochondrial morphology and function in neurons, and that loss of Bif-1 renders neurons more susceptible to apoptotic stress. These unique actions may relate to the presence of longer, neuron-specific Bif-1 isoforms, because only these forms of Bif-1 were able to rescue deficiencies caused by Bif-1 suppression. This finding not only demonstrates an unexpected role for Bif-1 in the nervous system but this work also establishes Bif-1 as a potential therapeutic target for the treatment of neurological diseases, especially degenerative disorders characterized by alterations in mitochondrial dynamics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Imunofluorescência , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Neurônios/ultraestrutura , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
17.
Hum Mol Genet ; 22(5): 890-903, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23197655

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a dominantly inherited neurodegenerative disorder caused by a CAG - polyglutamine (polyQ) repeat expansion in the ataxin-7 gene. In polyQ disorders, synaptic dysfunction and neurodegeneration may develop prior to symptom onset. However, conditional expression studies of polyQ disease models demonstrate that suppression of gene expression can yield complete reversal of established behavioral abnormalities. To determine if SCA7 neurological and neurodegenerative phenotypes are reversible, we crossed PrP-floxed-SCA7-92Q BAC transgenic mice with a tamoxifen-inducible Cre recombinase transgenic line, CAGGS-Cre-ER™. PrP-floxed-SCA7-92Q BAC;CAGGS-Cre-ER™ bigenic mice were treated with a single dose of tamoxifen 1 month after the onset of detectable ataxia, which resulted in ~50% reduction of polyQ-ataxin-7 expression. Tamoxifen treatment halted or reversed SCA7 motor symptoms, reduced ataxin-7 aggregation in Purkinje cells (PCs), and prevented loss of climbing fiber (CF)-PC synapses in comparison to vehicle-treated bigenic animals and tamoxifen-treated PrP-floxed-SCA7-92Q BAC single transgenic mice. Despite this phenotype rescue, reduced ataxin-7 expression did not result in full recovery of cerebellar molecular layer thickness or prevent Bergmann glia degeneration. These results demonstrate that suppression of mutant gene expression by only 50% in a polyQ disease model can have a significant impact on disease phenotypes, even when initiated after the onset of detectable behavioral deficits. The findings reported here are consistent with the emerging view that therapies aimed at reducing neurotoxic gene expression hold the potential to halt or reverse disease progression in afflicted patients, even after the onset of neurological disability.


Assuntos
Locomoção , Proteínas do Tecido Nervoso/genética , Peptídeos , Ataxias Espinocerebelares/genética , Animais , Ataxina-7 , Cerebelo/citologia , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Locomoção/genética , Locomoção/fisiologia , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ataxias Espinocerebelares/fisiopatologia , Expansão das Repetições de Trinucleotídeos
18.
J Neurosci ; 33(4): 1357-65, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345212

RESUMO

Maintaining proper mitochondrial length is essential for normal mitochondrial function in neurons. Mitochondrial fragmentation has been associated with neuronal cell death caused by a variety of experimental toxic stressors. Despite the fact that oxidative stress is a hallmark of neurodegenerative conditions and aging and the resulting activation of p53 is believed to contribute to the neuropathology, little is still known regarding changes in mitochondrial morphology in p53-dependent neuronal death. Therefore, we specifically addressed the relationship between genotoxic stress, p53 activation, and the regulation of mitochondrial morphology in neurons. In cultured postnatal mouse cortical neurons, treatment with the DNA-damaging agent camptothecin (CPT) resulted in elongated mitochondria, in contrast to fragmented mitochondria observed upon staurosporine and glutamate treatment. In fibroblasts, however, CPT resulted in fragmented mitochondria. CPT treatment in neurons suppressed expression of the mitochondrial fission protein Drp1 and the E3 ubiquitin ligase parkin. The presence of elongated mitochondria and the declines in Drp1 and parkin expression occurred before the commitment point for apoptosis. The CPT-induced changes in Drp1 and parkin were not observed in p53-deficient neurons, while p53 overexpression alone was sufficient to reduce the expression of the two proteins. Elevating Drp1 or parkin expression before CPT treatment enhanced neuronal viability and restored a normal pattern of mitochondrial morphology. The present findings demonstrate that genotoxic stress in neurons results in elongated mitochondria in contrast to fission induced by other forms of stress, and p53-dependent declines in Drp1 and parkin levels contribute to altered mitochondrial morphology and cell death.


Assuntos
Dano ao DNA/fisiologia , GTP Fosfo-Hidrolases/biossíntese , Proteínas Associadas aos Microtúbulos/biossíntese , Mitocôndrias/patologia , Proteínas Mitocondriais/biossíntese , Neurônios/patologia , Ubiquitina-Proteína Ligases/biossíntese , Animais , Morte Celular/fisiologia , Células Cultivadas , Dinaminas , Imunofluorescência , GTP Fosfo-Hidrolases/genética , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética
19.
J Neurochem ; 127(5): 592-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23952003

RESUMO

Microglia, the resident innate immune cells of the CNS, are the primary defenders against microbes and critical to CNS remodeling. Dysregulation of microglial behavior can lead to unchecked pro-inflammatory activity and subsequent neurodegeneration. The molecular mechanisms leading to chronic inflammation and microglial dysfunction in neurodegenerative diseases are not well-understood. It is known that patients with Presenilin 2 (PS2) mutations develop autosomal dominant Alzheimer disease. We have shown that a lack of normal PS2 function is associated with exaggerated microglia pro-inflammatory responses in vitro. To identify pathways by which PS2 regulates microglia and determine how PS2 dysfunction may lead to altered inflammatory pathways, we pursued an unbiased array approach to assess differential expression of microRNAs between murine PS2 knockout (KO) and wild-type microglia. We identified miR146, a negative regulator of monocyte pro-inflammatory response, as constitutively down-regulated in PS2 KO microglia. Consistent with a state of miR146 suppression, we found that PS2 KO microglia express higher levels of the miR146 target protein interleukin-1 receptor-associated kinase-1, and have increased NFκB transcriptional activity. We hypothesize that PS2 impacts microglial responses through modulation of miR146a. PS2 dysfunction, through aging or mutation, may contribute to neurodegeneration by influencing the pro-inflammatory behavior of microglia. Presenilin 2 (PS2), a membrane associated protease, has been implicated in the pathogenesis of Alzheimer disease. We have previously shown that PS2 plays an important role in curbing the proinflammatory response in microglia. Here, we report the novel finding that PS2 participates in maintaining the basal and cytokine induced expression of the innate immunity regulating microRNA, miR146. These data suggest one mechanism by which PS2 works to reign in proinflammatory microglial behavior and that PS2 dysfunction or deficiency could thus result in unchecked proinflammatory activation contributing to neurodegeneration.


Assuntos
MicroRNAs/metabolismo , Microglia/imunologia , Presenilina-2/genética , Animais , Animais Recém-Nascidos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/imunologia , Microglia/citologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Presenilina-2/imunologia , Cultura Primária de Células , Transcrição Gênica/imunologia
20.
Front Neurosci ; 17: 1321680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292900

RESUMO

Abnormal endo-lysosomal morphology is an early cytopathological feature of Alzheimer's disease (AD) and genome-wide association studies (GWAS) have implicated genes involved in the endo-lysosomal network (ELN) as conferring increased risk for developing sporadic, late-onset AD (LOAD). Characterization of ELN pathology and the underlying pathophysiology is a promising area of translational AD research and drug development. However, rigorous study of ELN vesicles in AD and aged control brains poses a unique constellation of methodological challenges due in part to the small size of these structures and subsequent requirements for high-resolution imaging. Here we provide a detailed protocol for high-resolution 3D morphological quantification of neuronal endosomes in postmortem AD brain tissue, using immunofluorescent staining, confocal imaging with image deconvolution, and Imaris software analysis pipelines. To demonstrate these methods, we present neuronal endosome morphology data from 23 sporadic LOAD donors and one aged non-AD control donor. The techniques described here were developed across a range of AD neuropathology to best optimize these methods for future studies with large cohorts. Application of these methods in research cohorts will help advance understanding of ELN dysfunction and cytopathology in sporadic AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA