Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2317402121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635632

RESUMO

DNA damage and neurodegenerative disorders are intimately linked but the underlying mechanism remains elusive. Here, we show that persistent DNA lesions in tissue-resident macrophages carrying an XPF-ERCC1 DNA repair defect trigger neuroinflammation and neuronal cell death in mice. We find that microglia accumulate dsDNAs and chromatin fragments in the cytosol, which are sensed thereby stimulating a viral-like immune response in Er1Cx/- and naturally aged murine brain. Cytosolic DNAs are packaged into extracellular vesicles (EVs) that are released from microglia and discharge their dsDNA cargo into IFN-responsive neurons triggering cell death. To remove cytosolic dsDNAs and prevent inflammation, we developed targeting EVs to deliver recombinant DNase I to Er1Cx/- brain microglia in vivo. We show that EV-mediated elimination of cytosolic dsDNAs is sufficient to prevent neuroinflammation, reduce neuronal apoptosis, and delay the onset of neurodegenerative symptoms in Er1Cx/- mice. Together, our findings unveil a causal mechanism leading to neuroinflammation and provide a rationalized therapeutic strategy against age-related neurodegeneration.


Assuntos
Vesículas Extracelulares , Microglia , Camundongos , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , Neurônios/patologia , Dano ao DNA
2.
Trends Genet ; 36(10): 777-791, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32684438

RESUMO

Nuclear DNA damage contributes to cellular malfunction and the premature onset of age-related diseases, including cancer. Until recently, the canonical DNA damage response (DDR) was thought to represent a collection of nuclear processes that detect, signal and repair damaged DNA. However, recent evidence suggests that beyond nuclear events, the DDR rewires an intricate network of metabolic circuits, fine-tunes protein synthesis, trafficking, and secretion as well as balances growth with defense strategies in response to genotoxic insults. In this review, we discuss how the active DDR signaling mobilizes extranuclear and systemic responses to promote cellular homeostasis and organismal survival in health and disease.


Assuntos
Envelhecimento , Reprogramação Celular , Senescência Celular , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Neoplasias/genética , Animais , Enzimas Reparadoras do DNA/genética , Humanos , Mutação
3.
BMC Bioinformatics ; 23(1): 439, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271369

RESUMO

BACKGROUND: In fluorescence microscopy, co-localization refers to the spatial overlap between different fluorescent labels in cells. The degree of overlap between two or more channels in a microscope may reveal a physical interaction or topological functional interconnection between molecules. Recent advances in the imaging field require the development of specialized computational analysis software for the unbiased assessment of fluorescently labelled microscopy images. RESULTS: Here we present SpotitPy, a semi-automated image analysis tool for 2D object-based co-localization. SpotitPy allows the user to select fluorescent labels and perform a semi-automated and robust segmentation of the region of interest in distinct cell types. The workflow integrates advanced pre-processing manipulations for de-noising and in-depth semi-automated quantification of the co-localized fluorescent labels in two different channels. We validated SpotitPy by quantitatively assessing the presence of cytoplasmic ribonucleoprotein granules, e.g. processing (P) bodies, under conditions that challenge mRNA translation, thus highlighting SpotitPy benefits for semi-automatic, accurate analysis of large image datasets in eukaryotic cells. SpotitPy comes in a command line interface or a simple graphical user interphase and can be used as a standalone application. CONCLUSIONS: Overall, we present a novel and user-friendly tool that performs a semi-automated image analysis for 2D object-based co-localization. SpotitPy can provide reproducible and robust quantifications for large datasets within a limited timeframe. The software is open-source and can be found in the GitHub project repository: ( https://github.com/alexiaales/SpotitPy ).


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos
4.
Bioessays ; 41(4): e1800201, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30919497

RESUMO

Transcription is a potential threat to genome integrity, and transcription-associated DNA damage must be repaired for proper messenger RNA (mRNA) synthesis and for cells to transmit their genome intact into progeny. For a wide range of structurally diverse DNA lesions, cells employ the highly conserved nucleotide excision repair (NER) pathway to restore their genome back to its native form. Recent evidence suggests that NER factors function, in addition to the canonical DNA repair mechanism, in processes that facilitate mRNA synthesis or shape the 3D chromatin architecture. Here, these findings are critically discussed and a working model that explains the puzzling clinical heterogeneity of NER syndromes highlighting the relevance of physiological, transcription-associated DNA damage to mammalian development and disease is proposed.


Assuntos
Reparo do DNA/genética , Instabilidade Genômica , Transcrição Gênica , Animais , Cromatina/química , Cromatina/metabolismo , Dano ao DNA/genética , Humanos , RNA Mensageiro/biossíntese
5.
Subcell Biochem ; 90: 309-322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30779013

RESUMO

Although the links between defects in DNA repair and cancer are well established, an accumulating body of evidence suggests a series of functional links between genome maintenance pathways, lifespan regulation mechanisms and age-related diseases in mammals. Indeed, the growing number of DNA repair-deficient patients with progeria suggests that persistent DNA damage and genome caretakers are tightly linked to lifespan regulating circuits and age-related diseases. Here, we discuss the impact of irreparable DNA damage events in mammalian physiology highlighting the relevance of DNA repair factors in mammalian development and aging.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Núcleo Celular/genética , Núcleo Celular/patologia , Dano ao DNA , Reparo do DNA , Animais , Humanos , Longevidade , Progéria/genética , Progéria/patologia
6.
Trends Immunol ; 35(9): 429-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25023467

RESUMO

To counteract DNA damage, cells employ genome maintenance pathways that are directed inward, relentlessly to scan and repair the genome. Adaptive and innate immune mechanisms are often directed outward, protecting self against pathogens. Recent work has revealed direct links between innate immune signaling and the DNA damage response (DDR). Here we review current understanding of the mechanism by which cells sense damaged and foreign DNA. We examine the functional role of DNA damage signaling in immune activation and discuss the relevance of these processes to DNA damage-driven chronic inflammation in disease and in aging.


Assuntos
Envelhecimento/imunologia , Dano ao DNA , Imunidade Inata , Inflamação/imunologia , Animais , Reparo do DNA , Humanos , Ativação Linfocitária , Transdução de Sinais
7.
Trends Genet ; 28(11): 566-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22824526

RESUMO

Nucleotide excision repair (NER) is a major DNA repair pathway that ensures that the genome remains functionally intact and is faithfully transmitted to progeny. However, defects in NER lead, in addition to cancer and aging, to developmental abnormalities whose clinical heterogeneity and varying severity cannot be fully explained by the DNA repair deficiencies. Recent work has revealed that proteins in NER play distinct roles, including some that go well beyond DNA repair. NER factors are components of protein complexes known to be involved in nucleosome remodeling, histone ubiquitination, and transcriptional activation of genes involved in nuclear receptor signaling, stem cell reprogramming, and postnatal mammalian growth. Together, these findings add new pieces to the puzzle for understanding NER and the relevance of NER defects in development and disease.


Assuntos
Reparo do DNA , DNA/metabolismo , Animais , Cromatina/metabolismo , Pleiotropia Genética , Genoma , Humanos , Transcrição Gênica
8.
J Immunol ; 190(12): 6104-14, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23686498

RESUMO

Memory phenotype T cells, found in unimmunized mice, display phenotypic and functional traits of memory cells and provide essential protection against infections, playing a role in both innate and adaptive immune responses. Mechanisms governing homeostasis of these memory phenotype T cells remain ill-defined. In this study, we reveal a crucial role of the negative costimulator programmed death-1 (PD-1) in regulating developmental fates of memory phenotype cells. Thus, in lymphoid organs and tissues of PD-1 knockout (KO) mice a marked accumulation of functional effector memory (T(EM)) phenotype CD8 T cells was observed. T(EM) phenotype cells from PD-1 KO mice exhibit decreased proliferation but increased survival potential. These cells could produce effector molecules constitutively, in response to phorbol esters or through bystander activation by innate stimuli. Similarly, in lymphopenia-induced proliferating CD8 T cells, whereby normally naive T cells acquire a memory phenotype, skewing toward a T(EM) phenotype was prominent in the absence of PD-1. Acquisition of the T(EM) phenotype was a CD8 T cell-intrinsic phenomenon as demonstrated by mixed bone marrow transfer experiments. Importantly, adoptively transferred PD-1 KO CD8 central memory T (T(CM)) cells converted into the T(EM) phenotype, indicating that PD-1 sets a major checkpoint in the T(CM) to T(EM) phenotype differentiation process. This was reflected by distinct patterns of gene expression of PD-1 KO T(CM) phenotype cells revealed by global transcriptional analysis. Additionally, adoptively transferred PD-1 KO T(EM) phenotype cells converted to a lesser degree to a T(CM) phenotype. Collectively, these data suggest that PD-1 shapes memory phenotype CD8 T cell subsets.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Receptor de Morte Celular Programada 1/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
9.
Proc Natl Acad Sci U S A ; 109(8): 2995-3000, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22323595

RESUMO

Nucleotide excision repair (NER) defects are associated with cancer, developmental disorders and neurodegeneration. However, with the exception of cancer, the links between defects in NER and developmental abnormalities are not well understood. Here, we show that the ERCC1-XPF NER endonuclease assembles on active promoters in vivo and facilitates chromatin modifications for transcription during mammalian development. We find that Ercc1(-/-) mice demonstrate striking physiological, metabolic and gene expression parallels with Taf10(-/-) animals carrying a liver-specific transcription factor II D (TFIID) defect in transcription initiation. Promoter occupancy studies combined with expression profiling in the liver and in vitro differentiation cell assays reveal that ERCC1-XPF interacts with TFIID and assembles with POL II and the basal transcription machinery on promoters in vivo. Whereas ERCC1-XPF is required for the initial activation of genes associated with growth, it is dispensable for ongoing transcription. Recruitment of ERCC1-XPF on promoters is accompanied by promoter-proximal DNA demethylation and histone marks associated with active hepatic transcription. Collectively, the data unveil a role of ERCC1/XPF endonuclease in transcription initiation establishing its causal contribution to NER developmental disorders.


Assuntos
Reparo do DNA/genética , Crescimento e Desenvolvimento/genética , Progéria/genética , Transcrição Gênica , Adipogenia/genética , Animais , Animais Recém-Nascidos , Metilação de DNA/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Endonucleases/deficiência , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Histonas/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fígado/patologia , Camundongos , Especificidade de Órgãos , Progéria/enzimologia , Progéria/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , Fator de Transcrição TFIID/metabolismo , Transcriptoma/genética
10.
FEBS Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844597

RESUMO

Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.

11.
DNA Repair (Amst) ; 140: 103699, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38852477

RESUMO

Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.

12.
Nat Commun ; 15(1): 4061, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744897

RESUMO

Transcription stress has been linked to DNA damage -driven aging, yet the underlying mechanism remains unclear. Here, we demonstrate that Tcea1-/- cells, which harbor a TFIIS defect in transcription elongation, exhibit RNAPII stalling at oxidative DNA damage sites, impaired transcription, accumulation of R-loops, telomere uncapping, chromatin bridges, and genome instability, ultimately resulting in cellular senescence. We found that R-loops at telomeres causally contribute to the release of telomeric DNA fragments in the cytoplasm of Tcea1-/- cells and primary cells derived from naturally aged animals triggering a viral-like immune response. TFIIS-defective cells release extracellular vesicles laden with telomeric DNA fragments that target neighboring cells, which consequently undergo cellular senescence. Thus, transcription stress elicits paracrine signals leading to cellular senescence, promoting aging.


Assuntos
Senescência Celular , Citosol , Dano ao DNA , Comunicação Parácrina , Telômero , Senescência Celular/genética , Animais , Telômero/metabolismo , Telômero/genética , Camundongos , Citosol/metabolismo , DNA/metabolismo , Transcrição Gênica , Camundongos Knockout , Humanos , Vesículas Extracelulares/metabolismo , Instabilidade Genômica , Envelhecimento/genética , Envelhecimento/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL
13.
Hepatology ; 55(2): 609-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21953681

RESUMO

UNLABELLED: The liver changes with age, leading to an impaired ability to respond to hepatic insults and increased incidence of liver disease in the elderly. Therefore, there is critical need for rapid model systems to study aging-related liver changes. One potential opportunity is murine models of human progerias or diseases of accelerated aging. Ercc1(-/Δ) mice model a rare human progeroid syndrome caused by inherited defects in DNA repair. To determine whether hepatic changes that occur with normal aging occur prematurely in Ercc1(-/Δ) mice, we systematically compared liver from 5-month-old progeroid Ercc1(-/Δ) mice to old (24-36-month-old) wild-type (WT) mice. Both displayed areas of necrosis, foci of hepatocellular degeneration, and acute inflammation. Loss of hepatic architecture, fibrosis, steatosis, pseudocapillarization, and anisokaryosis were more dramatic in Ercc1(-/Δ) mice than in old WT mice. Liver enzymes were significantly elevated in serum of Ercc1(-/Δ) mice and old WT mice, whereas albumin was reduced, demonstrating liver damage and dysfunction. The regenerative capacity of Ercc1(-/Δ) liver after partial hepatectomy was significantly reduced. There was evidence of increased oxidative damage in Ercc1(-/Δ) and old WT liver, including lipofuscin, lipid hydroperoxides and acrolein, as well as increased hepatocellular senescence. There was a highly significant correlation in genome-wide transcriptional changes between old WT and 16-week-old, but not 5-week-old, Ercc1(-/Δ) mice, emphasizing that the Ercc1(-/Δ) mice acquire an aging profile in early adulthood. CONCLUSION: There are strong functional, regulatory, and histopathological parallels between accelerated aging driven by a DNA repair defect and normal aging. This supports a role for DNA damage in driving aging and validates a murine model for rapidly testing hypotheses about causes and treatment for aging-related hepatic changes.


Assuntos
Envelhecimento/fisiologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Endonucleases/genética , Fígado/fisiopatologia , Progéria/fisiopatologia , Envelhecimento/patologia , Animais , Senescência Celular , Reparo do DNA , Perfilação da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Camundongos , Estresse Oxidativo , Progéria/genética , Progéria/metabolismo , Progéria/patologia
14.
Nat Struct Mol Biol ; 30(4): 475-488, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36959262

RESUMO

The DNA-repair capacity in somatic cells is limited compared with that in germ cells. It has remained unknown whether not only lesion-type-specific, but overall repair capacities could be improved. Here we show that the DREAM repressor complex curbs the DNA-repair capacities in somatic tissues of Caenorhabditis elegans. Mutations in the DREAM complex induce germline-like expression patterns of multiple mechanisms of DNA repair in the soma. Consequently, DREAM mutants confer resistance to a wide range of DNA-damage types during development and aging. Similarly, inhibition of the DREAM complex in human cells boosts DNA-repair gene expression and resistance to distinct DNA-damage types. DREAM inhibition leads to decreased DNA damage and prevents photoreceptor loss in progeroid Ercc1-/- mice. We show that the DREAM complex transcriptionally represses essentially all DNA-repair systems and thus operates as a highly conserved master regulator of the somatic limitation of DNA-repair capacities.


Assuntos
Proteínas de Caenorhabditis elegans , Humanos , Animais , Camundongos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Reparo do DNA , Dano ao DNA , DNA/metabolismo , Células Germinativas/metabolismo
15.
Sci Adv ; 9(45): eadi2095, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939182

RESUMO

Co-transcriptional RNA-DNA hybrids can not only cause DNA damage threatening genome integrity but also regulate gene activity in a mechanism that remains unclear. Here, we show that the nucleotide excision repair factor XPF interacts with the insulator binding protein CTCF and the cohesin subunits SMC1A and SMC3, leading to R-loop-dependent DNA looping upon transcription activation. To facilitate R-loop processing, XPF interacts and recruits with TOP2B on active gene promoters, leading to double-strand break accumulation and the activation of a DNA damage response. Abrogation of TOP2B leads to the diminished recruitment of XPF, CTCF, and the cohesin subunits to promoters of actively transcribed genes and R-loops and the concurrent impairment of CTCF-mediated DNA looping. Together, our findings disclose an essential role for XPF with TOP2B and the CTCF/cohesin complex in R-loop processing for transcription activation with important ramifications for DNA repair-deficient syndromes associated with transcription-associated DNA damage.


Assuntos
Proteínas de Ligação a DNA , Estruturas R-Loop , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cromossomos , Reparo do DNA , Cromatina
16.
Nature ; 444(7122): 1038-43, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17183314

RESUMO

XPF-ERCC1 endonuclease is required for repair of helix-distorting DNA lesions and cytotoxic DNA interstrand crosslinks. Mild mutations in XPF cause the cancer-prone syndrome xeroderma pigmentosum. A patient presented with a severe XPF mutation leading to profound crosslink sensitivity and dramatic progeroid symptoms. It is not known how unrepaired DNA damage accelerates ageing or its relevance to natural ageing. Here we show a highly significant correlation between the liver transcriptome of old mice and a mouse model of this progeroid syndrome. Expression data from XPF-ERCC1-deficient mice indicate increased cell death and anti-oxidant defences, a shift towards anabolism and reduced growth hormone/insulin-like growth factor 1 (IGF1) signalling, a known regulator of lifespan. Similar changes are seen in wild-type mice in response to chronic genotoxic stress, caloric restriction, or with ageing. We conclude that unrepaired cytotoxic DNA damage induces a highly conserved metabolic response mediated by the IGF1/insulin pathway, which re-allocates resources from growth to somatic preservation and life extension. This highlights a causal contribution of DNA damage to ageing and demonstrates that ageing and end-of-life fitness are determined both by stochastic damage, which is the cause of functional decline, and genetics, which determines the rates of damage accumulation and decline.


Assuntos
Dano ao DNA , Progéria/genética , Progéria/fisiopatologia , Somatotrofos/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Linhagem Celular , Reparo do DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Endonucleases/deficiência , Endonucleases/genética , Regulação da Expressão Gênica , Hormônio do Crescimento/antagonistas & inibidores , Hormônio do Crescimento/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Camundongos , Síndrome
17.
Front Aging ; 3: 973781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160606

RESUMO

Persistent DNA lesions build up with aging triggering inflammation, the body's first line of immune defense strategy against foreign pathogens and irritants. Once established, DNA damage-driven inflammation takes on a momentum of its own, due to the amplification and feedback loops of the immune system leading to cellular malfunction, tissue degenerative changes and metabolic complications. Here, we discuss the use of murine models with inborn defects in genome maintenance and the DNA damage response for understanding how irreparable DNA lesions are functionally linked to innate immune signaling highlighting their relevance for developing novel therapeutic strategies against the premature onset of aging-associated diseases.

18.
Trends Genet ; 24(2): 77-85, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18192065

RESUMO

Aging represents the progressive functional decline and increased mortality risk common to nearly all metazoans. Recent findings experimentally link DNA damage and organismal aging: longevity-regulating genetic pathways respond to the accumulation of DNA damage and other stress conditions and conversely influence the rate of damage accumulation and its impact for cancer and aging. This novel insight has emerged from studies on human progeroid diseases and mouse models that have deficient DNA repair pathways. Here we discuss a unified concept of an evolutionarily conserved 'survival' response that shifts the organism's resources from growth to maintenance as an adaptation to stresses, such as starvation and DNA damage. This shift protects the organism from cancer and promotes healthy aging.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Dano ao DNA , Animais , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Modelos Animais de Doenças , Evolução Molecular , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Invertebrados , Longevidade , Camundongos , Neoplasias/etiologia , Neoplasias/genética , Neoplasias/metabolismo , Progéria/genética , Progéria/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
PLoS Genet ; 4(8): e1000161, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18704162

RESUMO

Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of "survival" responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension.


Assuntos
Senilidade Prematura/genética , Longevidade/genética , Progéria/genética , Senilidade Prematura/metabolismo , Animais , Restrição Calórica , Nanismo/genética , Perfilação da Expressão Gênica , Humanos , Rim/fisiopatologia , Fígado/fisiopatologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Progéria/metabolismo , Baço/fisiopatologia
20.
J Invest Dermatol ; 141(4S): 961-967, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33494932

RESUMO

In mammals, genome instability and aging are intimately linked as illustrated by the growing list of patients with progeroid and animal models with inborn DNA repair defects. Until recently, DNA damage was thought to drive aging by compromising transcription or DNA replication, thereby leading to age-related cellular malfunction and somatic mutations triggering cancer. However, recent evidence suggests that DNA lesions also elicit widespread epigenetic alterations that threaten cell homeostasis as a function of age. In this review, we discuss the functional links of persistent DNA damage with the epigenome in the context of aging and age-related diseases.


Assuntos
Envelhecimento/genética , Epigênese Genética , Epigenoma , Encurtamento do Telômero , Animais , Dano ao DNA , Reparo do DNA , Instabilidade Genômica , Humanos , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA