Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Exp Biol ; 225(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546534

RESUMO

Sponges (phylum Porifera) are metazoans which lack muscles and nerve cells, yet perform coordinated behaviours such as whole-body contractions. Previous studies indicate diurnal variability in both the number of contractions and the expression of circadian clock genes. Here, we show that diurnal patterns are present in the contraction-expansion behaviour of the demosponge Tethya wilhelma, by using infrared videography and a simulated night/day cycle including sunrise and sunset mimics. In addition, we show that this behaviour is at least strongly influenced by ambient light intensity and therefore indicates light-sensing capabilities in this sponge species. This is supported by our finding that T. wilhelma consistently contracts at sunrise, and that this pattern disappears both when the sponge is kept in constant darkness and when it is in constant light.


Assuntos
Relógios Circadianos , Poríferos , Animais , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Luz , Escuridão
2.
J Exp Biol ; 224(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34308994

RESUMO

Annelids constitute a diverse phylum with more than 19,000 species, which exhibit greatly varying morphologies and lifestyles ranging from sessile detritivores to fast swimming active predators. The lifestyle of an animal is closely linked to its sensory systems, not least the visual equipment. Interestingly, many errantian annelid species from different families, such as the scale worms (Polynoidae), have two pairs of eyes on their prostomium. These eyes are typically 100-200 µm in diameter and structurally similar judged from their gross morphology. The polynoids Harmothoe imbricata and Lepidonotus squamatus from the North Atlantic are both benthic predators preying on small invertebrates but only H. imbricata can produce bioluminescence in its scales. Here, we examined the eye morphology, photoreceptor physiology and light-guided behaviour in these two scale worms to assess their visual capacity and visual ecology. The structure and physiology of the two pairs of eyes are remarkably similar within each species, with the only difference being the gaze direction. The photoreceptor physiology, however, differs between species. Both species express a single opsin in their eyes, but in H. imbricata the peak sensitivity is green shifted and the temporal resolution is lower, suggesting that the eyes of H. imbricata are adapted to detect their own bioluminescence. The behavioural experiments showed that both species are strictly night active but yielded no support for the hypothesis that H. imbricata is repelled by its own bioluminescence.


Assuntos
Anelídeos , Poliquetos , Adaptação Fisiológica , Animais , Olho , Humanos , Visão Ocular
3.
BMC Genomics ; 20(1): 175, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30836949

RESUMO

BACKGROUND: The phyla Cnidaria, Placozoa, Ctenophora, and Porifera emerged before the split of proto- and deuterostome animals, about 600 million years ago. These early metazoans are interesting, because they can give us important information on the evolution of various tissues and organs, such as eyes and the nervous system. Generally, cnidarians have simple nervous systems, which use neuropeptides for their neurotransmission, but some cnidarian medusae belonging to the class Cubozoa (box jellyfishes) have advanced image-forming eyes, probably associated with a complex innervation. Here, we describe a new transcriptome database from the cubomedusa Tripedalia cystophora. RESULTS: Based on the combined use of the Illumina and PacBio sequencing technologies, we produced a highly contiguous transcriptome database from T. cystophora. We then developed a software program to discover neuropeptide preprohormones in this database. This script enabled us to annotate seven novel T. cystophora neuropeptide preprohormone cDNAs: One coding for 19 copies of a peptide with the structure pQWLRGRFamide; one coding for six copies of a different RFamide peptide; one coding for six copies of pQPPGVWamide; one coding for eight different neuropeptide copies with the C-terminal LWamide sequence; one coding for thirteen copies of a peptide with the RPRAamide C-terminus; one coding for four copies of a peptide with the C-terminal GRYamide sequence; and one coding for seven copies of a cyclic peptide, of which the most frequent one has the sequence CTGQMCWFRamide. We could also identify orthologs of these seven preprohormones in the cubozoans Alatina alata, Carybdea xaymacana, Chironex fleckeri, and Chiropsalmus quadrumanus. Furthermore, using TBLASTN screening, we could annotate four bursicon-like glycoprotein hormone subunits, five opsins, and 52 other family-A G protein-coupled receptors (GPCRs), which also included two leucine-rich repeats containing G protein-coupled receptors (LGRs) in T. cystophora. The two LGRs are potential receptors for the glycoprotein hormones, while the other GPCRs are candidate receptors for the above-mentioned neuropeptides. CONCLUSIONS: By combining Illumina and PacBio sequencing technologies, we have produced a new high-quality de novo transcriptome assembly from T. cystophora that should be a valuable resource for identifying the neuronal components that are involved in vision and other behaviors in cubomedusae.


Assuntos
Cubomedusas/genética , Peptídeos/genética , Transmissão Sináptica/genética , Transcriptoma/genética , Animais , Cubomedusas/fisiologia , Humanos , Neurônios/metabolismo , Neuropeptídeos , Opsinas/genética , Receptores Acoplados a Proteínas G/genética , Visão Ocular/genética , Visão Ocular/fisiologia
4.
J Exp Biol ; 222(Pt 23)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31727758

RESUMO

Fan worms (Annelida: Sabellidae) possess compound eyes and other photoreceptors on their radiolar feeding tentacles. These eyes putatively serve as an alarm system that alerts the worm to encroaching threats, eliciting a rapid defensive retraction into their protective tube. The structure and independent evolutionary derivation of these radiolar eyes make them a fascinating target for exploring the emergence of new sensory systems and visually guided behaviours. However, little is known about their physiology and how this impacts their function. Here, we present electroretinogram recordings from the radiolar eyes of the fan worm Acromegalomma vesiculosum We examine their spectral sensitivity along with their dynamic range and temporal resolution. Our results show that they possess one class of photoreceptors with a single visual pigment peaking in the blue-green part of the spectrum around 510 nm, which matches the dominant wavelengths in their shallow coastal habitats. We found the eyes to have a rather high temporal resolution with a critical flicker fusion frequency around 35 Hz. The high temporal resolution of this response is ideally suited for detecting rapidly moving predators but also necessitates downstream signal processing to filter out caustic wave flicker. This study provides a fundamental understanding of how these eyes function. Furthermore, these findings emphasise a set of dynamic physiological principles that are well suited for governing a multi-eyed startle response in coastal aquatic habitats.


Assuntos
Células Fotorreceptoras de Invertebrados/fisiologia , Poliquetos/fisiologia , Animais , Eletrorretinografia , Olho/fisiopatologia
5.
J Invertebr Pathol ; 166: 107206, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31152770

RESUMO

Bat flies (Diptera: Nycteribiinae) are highly specialized bloodsucking bat ectoparasites. Some of the ectoparasitic bat flies are themselves parasitized with an ectoparasitic fungus of the genus Arthrorhynchus (Laboulbeniales). Ascospores of the fungus attach to the cuticle of a bat fly and develop a haustorium that penetrates the host cuticle. This interaction defines the fungus as a hyperparasite. Both the fly and the fungus are obligate parasites and this peculiar case of hyperparasitism has remained largely unstudied. We studied the prevalence of Laboulbeniales, genus Arthrorhynchus, in natural populations of bat flies infesting the bat species Miniopterus schreibersii, Myotis bechsteinii, My. blythii, My. daubentonii, My. escalerai and My. myotis in Portuguese caves. Laboulbeniales were found infecting 10 of the 428 screened bat flies (2.3%) in natural populations, with fewer infections in winter. Images obtained with transmission electron microscopy show the fungal haustorium within the bat fly host tissue, from where it extracts nutrition.


Assuntos
Quirópteros/parasitologia , Dípteros/parasitologia , Micoses/veterinária , Animais , Ascomicetos , Cavernas , Interações Hospedeiro-Parasita
6.
BMC Evol Biol ; 18(1): 168, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419810

RESUMO

BACKGROUND: Opsins are G protein-coupled receptors used for both visual and non-visual photoreception, and these proteins evolutionarily date back to the base of the bilaterians. In the current sequencing age, phylogenomic analysis has proven to be a powerful tool, facilitating the increase in knowledge about diversity within the opsin subclasses and, so far, at least nine types of opsins have been identified. Within echinoderms, opsins have been studied in Echinoidea and Ophiuroidea, which do not possess proper image forming eyes, but rather widely dispersed dermal photoreceptors. However, most species of Asteroidea, the starfish, possess true eyes and studying them will shed light on the diversity of opsin usage within echinoderms and help resolve the evolutionary history of opsins. RESULTS: Using high-throughput RNA sequencing, we have sequenced and analyzed the transcriptomes of different Acanthaster planci tissue samples: eyes, radial nerve, tube feet and a mixture of tissues from other organs. At least ten opsins were identified, and eight of them were found significantly differentially expressed in both eyes and radial nerve, with R-opsin being the most highly expressed in the eye. CONCLUSION: This study provides new important insight into the involvement of opsins in visual and nonvisual photoreception. Of relevance, we found the first indication of an r-opsin photopigment expressed in a well-developed visual eye in a deuterostome animal. Additionally, we provided tissue specific A. planci transcriptomes that will aid in future Evo Devo studies.


Assuntos
Olho/metabolismo , Opsinas/metabolismo , Estrelas-do-Mar/metabolismo , Motivos de Aminoácidos , Animais , Sequência de Bases , Teorema de Bayes , Evolução Biológica , Cílios/metabolismo , Regulação da Expressão Gênica , Opsinas/genética , Filogenia , Estrelas-do-Mar/genética
7.
Proc Biol Sci ; 285(1872)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29436504

RESUMO

Asteroids, starfish, are important members of the macro-benthos in almost all marine environments including the deep sea. Starfish are in general assumed to be largely olfactory guided, but recent studies have shown that two tropical shallow water species rely on vision alone to find their habitat at short distances. Their compound eyes are found at the tip of each arm and they vary little between examined species. Still, nothing is known about vision in the species found in the aphotic zone of the deep sea or whether they even have eyes. Here, 13 species of starfish from Greenland waters, covering a depth range from shallow waters to the deep sea below 1000 m, were examined for the presence of eyes and optical and morphological examinations were used to estimate the quality of vision. Further, species found in the aphotic zone below 320 m were checked for bioluminescence. All species, except the infaunal Ctenodiscus crispatus, had eyes, and two were found to be bioluminescent. Interestingly, one of the species found in the aphotic zone, Novodinia americana, had close to the highest spatial resolution known for starfish eyes along with being bioluminescent. Accordingly, we hypothesize that this species communicates visually using bioluminescent flashes putatively for reproductive purposes. Other species have greatly enhanced sensitivity with few large ommatidia but at the sacrifice of spatial resolution. The discovery of eyes in deep-sea starfish with a huge variation in optical quality and sensitivity indicates that their visual ecology also differs greatly.


Assuntos
Ecossistema , Estrelas-do-Mar/anatomia & histologia , Animais , Olho/anatomia & histologia , Groenlândia , Luminescência , Estrelas-do-Mar/fisiologia , Visão Ocular
8.
Front Zool ; 13(1): 41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27605999

RESUMO

BACKGROUND: Photoreceptors have evolved numerous times giving organisms the ability to detect light and respond to specific visual stimuli. Studies into the visual abilities of the Asteroidea (Echinodermata) have recently shown that species within this class have a more developed visual sense than previously thought and it has been demonstrated that starfish use visual information for orientation within their habitat. Whereas image forming eyes have been suggested for starfish, direct experimental proof of true spatial vision has not yet been obtained. RESULTS: The behavioural response of the coral reef inhabiting crown-of-thorns starfish (Acanthaster planci) was tested in controlled aquarium experiments using an array of stimuli to examine their visual performance. We presented starfish with various black-and-white shapes against a mid-intensity grey background, designed such that the animals would need to possess true spatial vision to detect these shapes. Starfish responded to black-and-white rectangles, but no directional response was found to black-and-white circles, despite equal areas of black and white. Additionally, we confirmed that starfish were attracted to black circles on a white background when the visual angle is larger than 14°. When changing the grey tone of the largest circle from black to white, we found responses to contrasts of 0.5 and up. The starfish were attracted to the dark area's of the visual stimuli and were found to be both attracted and repelled by the visual targets. CONCLUSIONS: For crown-of-thorns starfish, visual cues are essential for close range orientation towards objects, such as coral boulders, in the wild. These visually guided behaviours can be replicated in aquarium conditions. Our observation that crown-of-thorns starfish respond to black-and-white shapes on a mid-intensity grey background is the first direct proof of true spatial vision in starfish and in the phylum Echinodermata.

9.
BMC Bioinformatics ; 15: 350, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25407802

RESUMO

BACKGROUND: Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. RESULTS: We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). CONCLUSIONS: Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.


Assuntos
Luz , Anotação de Sequência Molecular/métodos , Filogenia , Transcriptoma , Visão Ocular/genética , Algoritmos , Animais , Proteínas do Olho/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Análise de Sequência de Proteína
10.
Proc Biol Sci ; 281(1777): 20133011, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24403344

RESUMO

Most known starfish species possess a compound eye at the tip of each arm, which, except for the lack of true optics, resembles an arthropod compound eye. Although these compound eyes have been known for about two centuries, no visually guided behaviour has ever been directly associated with their presence. There are indications that they are involved in negative phototaxis but this may also be governed by extraocular photoreceptors. Here, we show that the eyes of the coral-reef-associated starfish Linckia laevigata are slow and colour blind. The eyes are capable of true image formation although with low spatial resolution. Further, our behavioural experiments reveal that only specimens with intact eyes can navigate back to their reef habitat when displaced, demonstrating that this is a visually guided behaviour. This is, to our knowledge, the first report of a function of starfish compound eyes. We also show that the spectral sensitivity optimizes the contrast between the reef and the open ocean. Our results provide an example of an eye supporting only low-resolution vision, which is believed to be an essential stage in eye evolution, preceding the high-resolution vision required for detecting prey, predators and conspecifics.


Assuntos
Estrelas-do-Mar/anatomia & histologia , Estrelas-do-Mar/fisiologia , Animais , Olho/anatomia & histologia , Percepção Visual
11.
Zootaxa ; 3785: 533-49, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24872244

RESUMO

The family Tripedaliidae was re-defined and expanded based on a molecular phylogenetic hypothesis by Bentlage et al. (2010, Proceedings of the Royal Society Biological Science, 277: 497). Additionally, Bentlage et al. (2010) proposed that all members of the family Tripedaliidae present dimorphism in gonads and have structures that function as seminal vesicles (at least in males). Until now, no information on Tripedalia binata concerning gonad morphology, sexual dimorphism, spermatophore formation or structures that serve as seminal vesicles or spermathecae were published. We studied mature medusae of both sexes of Tripedalia cystophora, Tripedalia binata and Copula sivickisi in order to compare these structures in their stomach regions. We found sexual dimorphism and spermatophore formation in seminal vesicle-like structures in all three species. In particular, we show that along with the females of Copula sivickisi, the females of Tripedalia cystophora and Tripedalia binata also possess structures that store spermatophores and serve as spermathecae. The results are in agreement with the morphological synapomorphies for Tripedaliidae outlined in Bentlage et al. (2010), but suggest an adjustment of the diagnosis of Tripedaliidae (underlined): All carybdeids that display sexual dimorphism of the gonads, produce spermatophores and in which males and females possess subgastral sacs, pockets or purses which function as seminal vesicles or spermathecae.


Assuntos
Cubomedusas/anatomia & histologia , Animais , Feminino , Masculino , Fatores Sexuais , Especificidade da Espécie
12.
Curr Biol ; 34(7): R269-R270, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593767

RESUMO

High-resolution object vision - the ability to separate, classify, and interact with specific objects in the environment against the visual background - has only been conclusively shown to have evolved in three of the thirty-five animal phyla: chordates, arthropods, and mollusks (cephalopods)1. However, alciopid polychaetes (Phyllodocidae, Alciopini), which possess a pair of bulbous camera-type eyes, have also been hypothesized to achieve high acuity. In this study, we examined three species of night-active pelagic alciopids from the Mediterranean Sea. Our optical, morphological, and electrophysiological investigations show that their eyes have high spatial acuity and temporal resolution, supporting the notion that they are capable of active, high-resolution object vision. These results encourage interesting hypotheses about the visual ecology of these enigmatic polychaetes.


Assuntos
Artrópodes , Visão Ocular , Animais , Olho/anatomia & histologia , Moluscos , Ecologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-23893247

RESUMO

The four rhopalia of cubomedusae are integrated parts of the central nervous system carrying their many eyes and thought to be the centres of visual information processing. Rhopalial pacemakers control locomotion through a complex neural signal transmitted to the ring nerve and the signal frequency is modulated by the visual input. Since electrical synapses have never been found in the cubozoan nervous system all signals are thought to be transmitted across chemical synapses, and so far information about the neurotransmitters involved are based on immunocytochemical or behavioural data. Here we present the first direct physiological evidence for the types of neurotransmitters involved in sensory information processing in the rhopalial nervous system. FMRFamide, serotonin and dopamine are shown to have inhibitory effect on the pacemaker frequency. There are some indications that the fast acting acetylcholine and glycine have an initial effect and then rapidly desensitise. Other tested neuroactive compounds (GABA, glutamate, and taurine) could not be shown to have a significant effect.


Assuntos
Relógios Biológicos/efeitos dos fármacos , Cubomedusas/efeitos dos fármacos , Neurotransmissores/farmacologia , Natação , Potenciais de Ação , Animais , Cubomedusas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
14.
Artigo em Inglês | MEDLINE | ID: mdl-23417442

RESUMO

Directional swimming in the box jellyfish Tripedalia cystophora (cubozoa, cnidaria) is controlled by the shape of the velarium, which is a thin muscular sheet that forms the opening of the bell. It was unclear how different patterns of visual stimulation control directional swimming and that is the focus of this study. Jellyfish were tethered inside a small experimental tank, where the four vertical walls formed light panels. All four panels were lit at the start of an experiment. The shape of the opening in the velarium was recorded in response to switching off different combinations of panels. We found that under the experimental conditions the opening in the velarium assumed three distinct shapes during a swim contraction. The opening was (1) centred or it was off-centred and pocketed out either towards (2) a rhopalium or (3) a pedalium. The shape of the opening in the velarium followed the direction of the stimulus as long as the stimulus contained directional information. When the stimulus contained no directional information, the percentage of centred pulses increased and the shape of the off-centred pulses had a random orientation. Removing one rhopalium did not change the directional response of the animals, however, the number of centred pulses increased. When three rhopalia were removed, the percentage of centred pulses increased even further and the animals lost their ability to respond to directional information.


Assuntos
Comportamento Animal , Cubomedusas/fisiologia , Músculos/fisiologia , Natação , Percepção Visual , Animais , Cubomedusas/anatomia & histologia , Luz , Músculos/anatomia & histologia , Estimulação Luminosa
15.
J Exp Biol ; 216(Pt 24): 4520-9, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24031055

RESUMO

Cubomedusae possess a total of 24 eyes, some of which are structurally similar to vertebrate eyes. Accordingly, the medusae also display a range of light-guided behaviours including obstacle avoidance, diurnal activity patterns and navigation. Navigation is supported by spatial resolution and image formation in the so-called upper lens eye. Further, there are indications that obstacle avoidance requires image information from the lower lens eye. Here we use a behavioural assay to examine the obstacle avoidance behaviour of the Caribbean cubomedusa Tripedalia cystophora and test whether it requires spatial resolution. The possible influence of the contrast and orientation of the obstacles is also examined. We show that the medusae can only perform the behaviour when spatial information is present, and fail to avoid a uniformly dark wall, directly proving the use of spatial vision. We also show that the medusae respond stronger to high contrast lines than to low contrast lines in a graded fashion, and propose that the medusae use contrast as a semi-reliable measure of distance to the obstacle.


Assuntos
Sensibilidades de Contraste , Cubomedusas/fisiologia , Orientação , Reconhecimento Visual de Modelos , Animais , Comportamento Animal , Ecossistema , Luz , Natação , Visão Ocular
16.
Vision Res ; 203: 108159, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36516604

RESUMO

All known cubozoans, box jellyfish, have a similar visual system. They possess four sensory structures called rhopalia, which carry-six eyes each. Two of these six eyes are true image-forming camera type eyes in several ways similar to vertebrate eyes. The rhopalia hang by a thin flexible stalk and in the distal end, there is a high-density crystal. In an earlier study of the Caribbean species Tripedalia cystophora, we showed that the crystals act as weights ensuring that the rhopalia are always upright no matter the orientation of the medusa and the vertical part of the visual field of the eyes thus kept relatively constant. Here we have examined the horizontal part of the visual field under different experimental conditions including different visual environments. We find that the horizontal gaze direction is largely controlled by the anatomy of the rhopalium and rhopalial stalk, similar to what has previously been shown for the vertical gaze direction. In a vertically oriented medusa, the rhopalia are kept with a 90° angle between them with the lower lens eyes (LLE) pointing inwards. This 90° shift is kept in horizontally swimming medusa, resulting in the left LLE gazing right, the right gazing left, the bottom gazing orally (backwards compared to swimming direction), and the top LLE gazing aborally (forwards compared to swimming direction). The light environment was manipulated to test if the visual input influences this seemingly strict horizontal gaze direction but even in complete darkness there is tight mechanistic control.


Assuntos
Cubomedusas , Cristalino , Humanos , Animais , Cubomedusas/anatomia & histologia , Olho , Campos Visuais
17.
Curr Biol ; 33(19): 4150-4159.e5, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37741280

RESUMO

Associative learning, such as classical or operant conditioning, has never been unequivocally associated with animals outside bilatarians, e.g., vertebrates, arthropods, or mollusks. Learning modulates behavior and is imperative for survival in the vast majority of animals. Obstacle avoidance is one of several visually guided behaviors in the box jellyfish, Tripedalia cystophora Conant, 1897 (Cnidaria: Cubozoa), and it is intimately associated with foraging between prop roots in their mangrove habitat. The obstacle avoidance behavior (OAB) is a species-specific defense reaction (SSDR) for T. cystophora, so identifying such SSDR is essential for testing the learning capacity of a given animal. Using the OAB, we show that box jellyfish performed associative learning (operant conditioning). We found that the rhopalial nervous system is the learning center and that T. cystophora combines visual and mechanical stimuli during operant conditioning. Since T. cystophora has a dispersed central nervous system lacking a conventional centralized brain, our work challenges the notion that associative learning requires complex neuronal circuitry. Moreover, since Cnidaria is the sister group to Bilateria, it suggests the intriguing possibility that advanced neuronal processes, like operant conditioning, are a fundamental property of all nervous systems.


Assuntos
Artrópodes , Cubomedusas , Animais , Cubomedusas/fisiologia , Sistema Nervoso Central , Neuritos
18.
Biol Bull ; 245(1): 33-44, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820289

RESUMO

AbstractSea stars are a major component of the megabenthos in most marine habitats, including those within the deep sea. Being radially symmetric, sea stars have sensory structures that are evenly distributed along the arms, with a compound eye located on each arm tip of most examined species. Surprisingly, eyes with a spatial resolution that rivals the highest acuity known among sea stars so far were recently found in Novodinia americana, a member of the deep-sea sea star order Brisingida. Here, we examined 21 species across 11 brisingid genera for the presence of eyes; where eyes were present, we used morphological characteristics to evaluate spatial resolution and sensitivity. This study found that eyes were present within 43% of the examined species. These brisingid eyes were relatively large compared to those of other deep-sea sea stars, with a high number of densely packed ommatidia. One of the examined species, Brisingaster robillardi, had more than 600 ommatidia per eye, which is the highest number of ommatidia found in any sea star eye so far. Combined, the results indicate that brisingid eyes are adapted for spatial resolution over sensitivity. Together with results showing that many brisingids are bioluminescent, this relatively high spatial resolution suggests that the group may use their eyes to support visually guided intraspecific communication based on bioluminescent signals. Phylogenetic analysis indicated that the common ancestor of brisingids had eyes (P = 0.72) and that eyes were lost once within the clade.


Assuntos
Olho , Estrelas-do-Mar , Visão Ocular , Animais , Visão Ocular/fisiologia , Estrelas-do-Mar/fisiologia , Estrelas-do-Mar/anatomia & histologia , Olho/anatomia & histologia , Luminescência , Filogenia
19.
J Exp Biol ; 215(Pt 13): 2342-6, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22675196

RESUMO

The dinoflagellate Kryptoperidinium foliaceum possesses one of the largest eyespots among the autotrophic dinoflagellates. Until now they were believed to be negatively phototactic using a non-opsin photopigment. Here we provide evidence that in newly established cultures they are positively phototactic and that the dynamic range of phototaxis is ∼2.5 log units. Additionally, we find that the spectral sensitivity of the phototaxis agrees reasonably well with the absorption curve of a theoretical opsin, with a peak sensitivity around 500 nm. The sensitivity in the short wavelength end of the tested spectrum is unexpectedly low, but this is probably due to selective filtering. Interestingly, the phototaxis could be temporarily overruled by tactile stimuli. After physical contact with the light guide, the cells escaped the area, and we suggest that this may serve as predator avoidance.


Assuntos
Dinoflagellida/fisiologia , Dinoflagellida/ultraestrutura , Dinoflagellida/química , Luz , Movimento , Opsinas/química , Proteínas de Protozoários/química , Espectrofotometria
20.
Front Neuroanat ; 16: 916510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991966

RESUMO

Cubomedusae, or box jellyfish, have a complex visual system comprising 24 eyes of four types. Like other cnidarians, their photoreceptor cells are ciliary in morphology, and a range of different techniques together show that at least two of the eye types-the image-forming upper and lower lens eyes-express opsin as the photopigment. The photoreceptors of these two eye types express the same opsin (Tc LEO), which belongs to the cnidarian-specific clade cnidops. Interestingly, molecular work has found a high number of opsin genes in box jellyfish, especially in the Caribbean species Tripedalia cystophora, most of which are of unknown function. In the current study, we raised antibodies against three out of five opsins identified from transcriptomic data from T. cystophora and used them to map the expression patterns. These expression patterns suggest one opsin as the photopigment in the slit eyes and another as a putative photoisomerase found in photoreceptors of all four eyes types. The last antibody stained nerve-like cells in the tentacles, in connection with nematocytes, and the radial nerve, in connection with the gonads. This is the first time photopigment expression has been localized to the outer segments of the photoreceptors in a cnidarian ocellus (simple eye). The potential presence of a photoisomerase could be another interesting convergence between box jellyfish and vertebrate photoreceptors, but it awaits final experimental proof.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA