Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Eur Heart J ; 44(27): 2483-2494, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36810794

RESUMO

AIMS: Atrial fibrillation (AF) is associated with altered cAMP/PKA signaling and an AF-promoting reduction of L-type Ca2+-current (ICa,L), the mechanisms of which are poorly understood. Cyclic-nucleotide phosphodiesterases (PDEs) degrade cAMP and regulate PKA-dependent phosphorylation of key calcium-handling proteins, including the ICa,L-carrying Cav1.2α1C subunit. The aim was to assess whether altered function of PDE type-8 (PDE8) isoforms contributes to the reduction of ICa,L in persistent (chronic) AF (cAF) patients. METHODS AND RESULTS: mRNA, protein levels, and localization of PDE8A and PDE8B isoforms were measured by RT-qPCR, western blot, co-immunoprecipitation and immunofluorescence. PDE8 function was assessed by FRET, patch-clamp and sharp-electrode recordings. PDE8A gene and protein levels were higher in paroxysmal AF (pAF) vs. sinus rhythm (SR) patients, whereas PDE8B was upregulated in cAF only. Cytosolic abundance of PDE8A was higher in atrial pAF myocytes, whereas PDE8B tended to be more abundant at the plasmalemma in cAF myocytes. In co-immunoprecipitation, only PDE8B2 showed binding to Cav1.2α1C subunit which was strongly increased in cAF. Accordingly, Cav1.2α1C showed a lower phosphorylation at Ser1928 in association with decreased ICa,L in cAF. Selective PDE8 inhibition increased Ser1928 phosphorylation of Cav1.2α1C, enhanced cAMP at the subsarcolemma and rescued the lower ICa,L in cAF, which was accompanied by a prolongation of action potential duration at 50% of repolarization. CONCLUSION: Both PDE8A and PDE8B are expressed in human heart. Upregulation of PDE8B isoforms in cAF reduces ICa,L via direct interaction of PDE8B2 with the Cav1.2α1C subunit. Thus, upregulated PDE8B2 might serve as a novel molecular mechanism of the proarrhythmic reduction of ICa,L in cAF.


Assuntos
Fibrilação Atrial , Humanos , Cálcio/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Miócitos Cardíacos/fisiologia , Fosforilação
2.
Opt Express ; 30(20): 36509-36525, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258578

RESUMO

In shallow nearshore waters, seafloor heights and properties can be accurately measured by the current generation of space-based elastic backscatter lidars: CALIOP, flying aboard the CALIPSO satellite and ATLAS aboard ICESat-2. CALIOP's 532 nm volume depolarization ratios, together with the ratios of the attenuated backscatter coefficients measured at 532 nm and 1064 nm, can efficiently distinguish optically shallow waters from nearby land surfaces and deep oceans. ATLAS's high vertical resolution photon measurements can accurately determine seafloor depths in shallow water bodies, characterize seafloor reflectance, and provide assessments of ocean biomass concentrations in the intervening water column. By adding bathymetry, seafloor optical properties (e.g., reflectance, depolarization ratio and attenuated backscatter), and nighttime observations, space lidar measurements obtained in nearshore waters can provide a wealth of unique information to complement existing satellite-based ocean color remote sensing capabilities. The results reported here demonstrate the feasibility of using satellite lidars for nearshore seafloor ecosystem analyses, which in turn provide critical insights for studies of coastal navigation and seabed topography changes due to disasters, as well as the temporal and spatial morphological evolution of coastal systems.

3.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743074

RESUMO

Disturbances in Endoplasmic Reticulum (ER) homeostasis induce ER stress, which has been involved in the development and progression of various heart diseases, including arrhythmias, cardiac hypertrophy, ischemic heart diseases, dilated cardiomyopathy, and heart failure. A mild-to-moderate ER stress is considered beneficial and adaptative for heart functioning by engaging the pro-survival unfolded protein response (UPR) to restore normal ER function. By contrast, a severe or prolonged ER stress is detrimental by promoting cardiomyocyte apoptosis through hyperactivation of the UPR pathways. Previously, we have demonstrated that the NAD+-dependent deacetylase SIRT1 is cardioprotective in response to severe ER stress by regulating the PERK pathway of the UPR, suggesting that activation of SIRT1 could protect against ER-stress-induced cardiac damage. The purpose of this study was to identify natural molecules able to alleviate ER stress and inhibit cardiomyocyte cell death through SIRT1 activation. Several phenolic compounds, abundant in vegetables, fruits, cereals, wine, and tea, were reported to stimulate the deacetylase activity of SIRT1. Here, we evaluated the cardioprotective effect of ten of these phenolic compounds against severe ER stress using cardiomyoblast cells and mice. Among the molecules tested, we showed that ferulic acid, pterostilbene, and tyrosol significantly protect cardiomyocytes and mice heart from cardiac alterations induced by severe ER stress. By studying the mechanisms involved, we showed that the activation of the PERK/eIF2α/ATF4/CHOP pathway of the UPR was reduced by ferulic acid, pterostilbene, and tyrosol under ER stress conditions, leading to a reduction in cardiomyocyte apoptosis. The protection afforded by these phenolic compounds was not directly related to their antioxidant activity but rather to their ability to increase SIRT1-mediated deacetylation of eIF2α. Taken together, our results suggest that ferulic acid, pterostilbene, and tyrosol are promising molecules to activate SIRT1 to protect the heart from the adverse effects of ER stress.


Assuntos
Fator de Iniciação 2 em Eucariotos , Sirtuína 1 , Animais , Apoptose , Ácidos Cumáricos , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Camundongos , Álcool Feniletílico/análogos & derivados , Sirtuína 1/metabolismo , Estilbenos , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
4.
J Mol Cell Cardiol ; 155: 10-20, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631188

RESUMO

AIM: To obtain a quantitative expression profile of the main genes involved in the cAMP-signaling cascade in human control atria and in different cardiac pathologies. METHODS AND RESULTS: Expression of 48 target genes playing a relevant role in the cAMP-signaling cascade was assessed by RT-qPCR. 113 samples were obtained from right atrial appendages (RAA) of patients in sinus rhythm (SR) with or without atrium dilation, paroxysmal atrial fibrillation (AF), persistent AF or heart failure (HF); and left atrial appendages (LAA) from patients in SR or with AF. Our results show that right and left atrial appendages in donor hearts or from SR patients have similar expression values except for AC7 and PDE2A. Despite the enormous chamber-dependent variability in the gene-expression changes between pathologies, several distinguishable patterns could be identified. PDE8A, PI3Kγ and EPAC2 were upregulated in AF. Different phosphodiesterase (PDE) families showed specific pathology-dependent changes. CONCLUSION: By comparing mRNA-expression patterns of the cAMP-signaling cascade related genes in right and left atrial appendages of human hearts and across different pathologies, we show that 1) gene expression is not significantly affected by cardioplegic solution content, 2) it is appropriate to use SR atrial samples as controls, and 3) many genes in the cAMP-signaling cascade are affected in AF and HF but only few of them appear to be chamber (right or left) specific. TOPIC: Genetic changes in human diseased atria. TRANSLATIONAL PERSPECTIVE: The cyclic AMP signaling pathway is important for atrial function. However, expression patterns of the genes involved in the atria of healthy and diseased hearts are still unclear. We give here a general overview of how different pathologies affect the expression of key genes in the cAMP signaling pathway in human right and left atria appendages. Our study may help identifying new genes of interest as potential therapeutic targets or clinical biomarkers for these pathologies and could serve as a guide in future gene therapy studies.


Assuntos
AMP Cíclico/metabolismo , Variação Genética , Átrios do Coração/metabolismo , Sistemas do Segundo Mensageiro/genética , Idoso , Alelos , Apêndice Atrial/metabolismo , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Biomarcadores , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma , Proteômica/métodos
5.
Transpl Int ; 34(11): 2415-2417, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358369

RESUMO

We reported 3 kidney transplant patients with PTLD who developed mixed AR following IS treatment minimization. AR episodes were treated with extracorporeal photopheresis (ECP), methylprednisolone and IVIG. In all patients, graft function improved under ECP and stabilized in the long term. These observations suggest that ECP is safe and efficient for treatment of AR in the context of PTLD.


Assuntos
Transplante de Rim , Fotoferese , Aloenxertos , Rejeição de Enxerto/terapia , Humanos , Rim , Transplante de Rim/efeitos adversos
6.
Circulation ; 137(21): 2256-2273, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29217642

RESUMO

BACKGROUND: Myocardial metabolic impairment is a major feature in chronic heart failure. As the major coenzyme in fuel oxidation and oxidative phosphorylation and a substrate for enzymes signaling energy stress and oxidative stress response, nicotinamide adenine dinucleotide (NAD+) is emerging as a metabolic target in a number of diseases including heart failure. Little is known on the mechanisms regulating homeostasis of NAD+ in the failing heart. METHODS: To explore possible alterations of NAD+ homeostasis in the failing heart, we quantified the expression of NAD+ biosynthetic enzymes in the human failing heart and in the heart of a mouse model of dilated cardiomyopathy (DCM) triggered by Serum Response Factor transcription factor depletion in the heart (SRFHKO) or of cardiac hypertrophy triggered by transverse aorta constriction. We studied the impact of NAD+ precursor supplementation on cardiac function in both mouse models. RESULTS: We observed a 30% loss in levels of NAD+ in the murine failing heart of both DCM and transverse aorta constriction mice that was accompanied by a decrease in expression of the nicotinamide phosphoribosyltransferase enzyme that recycles the nicotinamide precursor, whereas the nicotinamide riboside kinase 2 (NMRK2) that phosphorylates the nicotinamide riboside precursor is increased, to a higher level in the DCM (40-fold) than in transverse aorta constriction (4-fold). This shift was also observed in human failing heart biopsies in comparison with nonfailing controls. We show that the Nmrk2 gene is an AMP-activated protein kinase and peroxisome proliferator-activated receptor α responsive gene that is activated by energy stress and NAD+ depletion in isolated rat cardiomyocytes. Nicotinamide riboside efficiently rescues NAD+ synthesis in response to FK866-mediated inhibition of nicotinamide phosphoribosyltransferase and stimulates glycolysis in cardiomyocytes. Accordingly, we show that nicotinamide riboside supplementation in food attenuates the development of heart failure in mice, more robustly in DCM, and partially after transverse aorta constriction, by stabilizing myocardial NAD+ levels in the failing heart. Nicotinamide riboside treatment also robustly increases the myocardial levels of 3 metabolites, nicotinic acid adenine dinucleotide, methylnicotinamide, and N1-methyl-4-pyridone-5-carboxamide, that can be used as validation biomarkers for the treatment. CONCLUSIONS: The data show that nicotinamide riboside, the most energy-efficient among NAD precursors, could be useful for treatment of heart failure, notably in the context of DCM, a disease with few therapeutic options.


Assuntos
Cardiomiopatia Dilatada/tratamento farmacológico , Niacinamida/análogos & derivados , Proteínas Quinases Ativadas por AMP/metabolismo , Acrilamidas/uso terapêutico , Animais , Ácido Cítrico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Insuficiência Cardíaca/prevenção & controle , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Niacinamida/uso terapêutico , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , PPAR alfa/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piperidinas/uso terapêutico , Compostos de Piridínio , Ratos , Fator de Resposta Sérica/deficiência , Fator de Resposta Sérica/genética
7.
Am J Transplant ; 19(2): 331-344, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30019521

RESUMO

Donation after circulatory death (DCD) holds great promise for improving cardiac graft availability; however, concerns persist regarding injury following warm ischemia, after donor circulatory arrest, and subsequent reperfusion. Application of preischemic treatments is limited for ethical reasons; thus, cardioprotective strategies applied at graft procurement (reperfusion) are of particular importance in optimizing graft quality. Given the key role of mitochondria in cardiac ischemia-reperfusion injury, we hypothesize that 3 reperfusion strategies-mild hypothermia, mechanical postconditioning, and hypoxia, when briefly applied at reperfusion onset-provoke mitochondrial changes that may underlie their cardioprotective effects. Using an isolated, working rat heart model of DCD, we demonstrate that all 3 strategies improve oxygen-consumption-cardiac-work coupling and increase tissue adenosine triphosphate content, in parallel with increased functional recovery. These reperfusion strategies, however, differentially affect mitochondria; mild hypothermia also increases phosphocreatine content, while mechanical postconditioning stimulates mitochondrial complex I activity and reduces cytochrome c release (marker of mitochondrial damage), whereas hypoxia upregulates the expression of peroxisome proliferator-activated receptor-gamma coactivator (regulator of mitochondrial biogenesis). Characterization of the role of mitochondria in cardioprotective reperfusion strategies should aid in the identification of new, mitochondrial-based therapeutic targets and the development of effective reperfusion strategies that could ultimately facilitate DCD heart transplantation.


Assuntos
Transplante de Coração/métodos , Mitocôndrias/patologia , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Reperfusão , Doadores de Tecidos , Obtenção de Tecidos e Órgãos/normas , Animais , Morte , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Isquemia Quente
8.
BMC Nephrol ; 20(1): 334, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455233

RESUMO

BACKGROUND: The value of ANCA positivity in the setting of systemic lupus erythematous and their pathogenicity remains uncertain. CASE PRESENTATION: We report the case of a 48-year-old female with rapidly progressive kidney failure, arthro-myalgia and weight loss. Auto-immune screening showed anti-dsDNA antibodies, complement consumption and triple ANCA positivity. A first kidney biopsy done at presentation highlighted class IV-G glomerulonephritis with elective extra-capillary involvement and mainly C1q glomerular deposition at immunofluorescence study. After three months of a regimen combining steroids and cyclophosphamide, a second biopsy was performed and showed class IV-G glomerulonephritis with mainly endocapillary proliferation. CONCLUSION: This case is atypical in view of immunological profile and kidney histopathological presentation and evolution and gives rise to discussion in view of recent data on ANCA value in lupus nephritis, and suggests that different auto-immune pathways may be involved in lupus nephritis.


Assuntos
Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/imunologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/imunologia , Injúria Renal Aguda/patologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Diagnóstico Diferencial , Feminino , Humanos , Nefrite Lúpica/patologia , Pessoa de Meia-Idade
9.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658614

RESUMO

Heart failure is associated with profound alterations of energy metabolism thought to play a major role in the progression of this syndrome. SIRT1 is a metabolic sensor of cellular energy and exerts essential functions on energy metabolism, oxidative stress response, apoptosis, or aging. Importantly, SIRT1 deacetylates the peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α), the master regulator of energy metabolism involved in mitochondrial biogenesis and fatty acid utilization. However, the exact role of SIRT1 in controlling cardiac energy metabolism is still incompletely understood and conflicting results have been obtained. We generated a cardio-specific inducible model of Sirt1 gene deletion in mice (Sirt1ciKO) to decipher the role of SIRT1 in control conditions and following cardiac stress induced by pressure overload. SIRT1 deficiency induced a progressive cardiac dysfunction, without overt alteration in mitochondrial content or properties. Sixteen weeks after Sirt1 deletion an increase in mitochondrial reactive oxygen species (ROS) production and a higher rate of oxidative damage were observed, suggesting disruption of the ROS production/detoxification balance. Following pressure overload, cardiac dysfunction and alteration in mitochondrial properties were exacerbated in Sirt1ciKO mice. Overall the results demonstrate that SIRT1 plays a cardioprotective role on cardiac energy metabolism and thereby on cardiac function.


Assuntos
Cardiopatias/genética , Coração , Pressão , Sirtuína 1/genética , Sirtuína 1/metabolismo , Animais , Ecocardiografia , Fibrose/patologia , Deleção de Genes , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Miócitos Cardíacos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tamoxifeno/efeitos adversos
10.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934680

RESUMO

The bromodomain and extra-terminal domain family inhibitors (BETi) are a promising new class of anticancer agents. Since numerous anticancer drugs have been correlated to cardiomyopathy, and since BETi can affect non-cancerous tissues, we aimed to investigate in healthy animals any ultrastructural BETi-induced alterations of the heart as compared to skeletal muscle. Male Wistar rats were either treated during 3 weeks with I-BET-151 (2 or 10 mg/kg/day) (W3) or treated for 3 weeks then allowed to recover for another 3 weeks (W6) (3-weeks drug washout). Male C57Bl/6J mice were only treated during 5 days (50 mg/kg/day). We demonstrated the occurrence of ultrastructural alterations and progressive destruction of cardiomyocyte mitochondria after I-BET-151 exposure. Those mitochondrial alterations were cardiac muscle-specific, since the skeletal muscles of exposed animals were similar in ultrastructure presentation to the non-exposed animals. I-BET-151 decreased the respiration rate of heart mitochondria in a dose-dependent manner. At the higher dose, it also decreased mitochondrial mass, as evidenced by reduced right ventricular citrate synthase content. I-BET-151 reduced the right and left ventricular fractional shortening. The concomitant decrease in the velocity-time-integral in both the aorta and the pulmonary artery is also suggestive of an impaired heart function. The possible context-dependent cardiac side effects of these drugs have to be appreciated. Future studies should focus on the basic mechanisms of potential cardiovascular toxicities induced by BETi and strategies to minimize these unexpected complications.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Animais , Eletrocardiografia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Especificidade de Órgãos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA