Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(28): 8650-5, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124099

RESUMO

Nonsmall cell lung cancer (NSCLC) is one of the leading causes of death worldwide. TNF-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in malignant cells without inducing significant toxicity in normal cells. However, several carcinomas, including lung cancer, remain resistant to TRAIL. MicroRNAs (miRNAs) are small noncoding RNAs of ∼ 24 nt that block mRNA translation and/or negatively regulate its stability. They are often aberrantly expressed in cancer and have been implicated in increasing susceptibility or resistance to TRAIL-induced apoptosis by inhibiting key functional proteins. Here we show that miR-148a is down-regulated in cells with acquired TRAIL-resistance compared with TRAIL-sensitive cells. Enforced expression of miR-148a sensitized cells to TRAIL and reduced lung tumorigenesis in vitro and in vivo through the down-modulation of matrix metalloproteinase 15 (MMP15) and Rho-associated kinase 1 (ROCK1). These findings suggest that miR-148a acts as a tumor suppressor and might have therapeutic application in the treatment of NSCLC.


Assuntos
Apoptose/fisiologia , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(26): E3355-64, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080425

RESUMO

TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. However, TRAIL can also stimulate the proliferation of cancer cells through the activation of NF-κB, but the exact mechanism is still poorly understood. In this study, we show that chronic exposure to subtoxic concentrations of TRAIL results in acquired resistance. This resistance is associated with the increase in miR-21, miR-30c, and miR-100 expression, which target tumor-suppressor genes fundamental in the response to TRAIL. Importantly, down-regulation of caspase-8 by miR-21 blocks receptor interacting protein-1 cleavage and induces the activation of NF-κB, which regulates these miRNAs. Thus, TRAIL activates a positive feedback loop that sustains the acquired resistance and causes an aggressive phenotype. Finally, we prove that combinatory treatment of NF-κB inhibitors and TRAIL is able to revert resistance and reduce tumor growth, with important consequences for the clinical practice.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , MicroRNAs/fisiologia , NF-kappa B/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transcrição Gênica
3.
Proc Natl Acad Sci U S A ; 110(21): 8573-8, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650389

RESUMO

In the past decade, we have observed exciting advances in lung cancer therapy, including the development of targeted therapies. However, additional strategies for early detection and tumor-based therapy are still essential in improving patient outcomes. EGF receptor (EGFR) and MET (the receptor tyrosine kinase for hepatocyte growth factors) are cell-surface tyrosine kinase receptors that have been implicated in diverse cellular processes and as regulators of several microRNAs (miRNAs), thus contributing to tumor progression. Here, we demonstrate a biological link between EGFR, MET, and the miRNA cluster 23a ~ 27a ~ 24-2. We show that miR-27a regulates MET, EGFR, and Sprouty2 in lung cancer. In addition, we identify both direct and indirect mechanisms by which miR-27a can regulate both MET and EGFR. Thus, we propose a mechanism for MET and EGFR axis regulation that may lead to the development of therapeutics in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/biossíntese , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-met/biossíntese , RNA Neoplásico/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-met/genética , RNA Neoplásico/genética
4.
PLoS Genet ; 9(3): e1003311, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505378

RESUMO

MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17ß-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells.


Assuntos
Neoplasias da Mama , Proteína 1 de Resposta de Crescimento Precoce , Receptor alfa de Estrogênio , MicroRNAs , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(41): 16570-5, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012423

RESUMO

MicroRNAs (miRNAs) have an important role in the development of chemosensitivity or chemoresistance in different types of cancer. Activation of the ERK1/2 pathway is a major determinant of diverse cellular processes and cancer development and is responsible for the transcription of several important miRNAs. Here we show a link between the ERK1/2 pathway and BIM expression through miR-494. We blocked ERK1/2 nuclear activity through the overexpression of an ERK1/2 natural interactor, the protein PED/PEA15, and we performed a microRNA expression profile. miR-494 was the most down-regulated microRNA after ERK1/2 inactivation. Moreover, we found that miR-494 induced Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance in non-small-cell lung cancer (NSCLC) through the down-modulation of BIM. Elucidation of this undiscovered ERK1/2 pathway that regulates apoptosis and cell proliferation through miR-494 in NSCLC will greatly enhance our understanding of the mechanisms responsible for TRAIL resistance and will provide an additional arm for the development of anticancer therapies.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteínas Proto-Oncogênicas/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Annu Rev Pharmacol Toxicol ; 51: 25-43, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20809797

RESUMO

It has been demonstrated that all the known processes involved in cancer, including apoptosis, proliferation, survival, and metastasis, are regulated by small regulatory noncoding RNAs consisting of approximately 19-25 nucleotides; these are named microRNAs (miRNAs). Both loss and gain of miRNA function contribute to cancer development through the upregulation and silencing, respectively, of different target genes. Experimental evidence indicates that the use of miRNA mimics or anti-microRNAs may represent a powerful therapeutic strategy to interfere with key molecular pathways involved in cancer. This review provides insights about how micro- RNAs act as oncogenes and tumor suppressor genes and how these findings, along with our increasing understanding of miRNA regulation, can be applied to optimize recent miRNA-based technologies and make them suitable for clinical applications.


Assuntos
MicroRNAs/metabolismo , Neoplasias/genética , Oncogenes , Animais , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genes Supressores de Tumor , Humanos , Neoplasias/terapia , Regulação para Cima
7.
Mod Pathol ; 27(6): 851-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24232864

RESUMO

Idiopathic pulmonary fibrosis is a fatal disease without effective therapy or diagnostic test. To investigate a potential role for γ-herpesviruses in this disease, 21 paraffin-embedded lung biopsies from patients diagnosed with idiopathic pulmonary fibrosis and 21 lung biopsies from age-matched controls with pulmonary fibrosis of known etiology were examined for a series of γ-herpesviruses' DNA/RNA and related proteins using in situ hybridization and reverse transcriptase-polymerase chain reaction (RT-PCR)-based methods. We detected four proteins known to be in the genome of several γ-herpesviruses (cyclin D, thymidylate synthase, dihydrofolate reductase, and interleukin-17) that were strongly co-expressed in the regenerating epithelial cells of each of the 21 idiopathic pulmonary fibrosis cases and not in the benign epithelia of the controls. Among the γ-herpesviruses, only herpesvirus saimiri expresses all four of these 'pirated' mammalian proteins. We found herpesvirus saimiri DNA in the regenerating epithelial cells of 21/21 idiopathic pulmonary fibrosis cases using four separate probe sets but not in the 21 controls. RT-PCR showed that the source of the cyclin D RNA in active idiopathic pulmonary fibrosis was herpesvirus saimiri and not human. We cloned and sequenced part of genome corresponding to the DNA polymerase herpesvirus saimiri gene from an idiopathic pulmonary fibrosis sample and it matched 100% with the published viral sequence. These data are consistent with idiopathic pulmonary fibrosis representing herpesvirus saimiri-induced pulmonary fibrosis. Thus, treatment directed against viral proliferation and/or viral-associated proteins may halt disease progression. Further, demonstration of the viral nucleic acids or proteins may help diagnose the disease.


Assuntos
Infecções por Herpesviridae/complicações , Fibrose Pulmonar Idiopática/virologia , Idoso , DNA Viral/isolamento & purificação , Feminino , Herpesvirus Saimiriíneo 2 , Humanos , Hibridização In Situ , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Drug Resist Updat ; 16(3-5): 47-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23757365

RESUMO

Despite substantial progress in understanding the cancer signaling network, effective therapies remain scarce due to insufficient disruption of oncogenic pathways, drug resistance and drug-induced toxicity. New and more creative approaches are therefore required for the treatment of cancer. MicroRNAs (miRNAs) are a family of small noncoding RNAs that regulate gene expression by sequence-selective targeting of mRNAs, leading to a translational repression or mRNA degradation. Experimental evidence demonstrates that dysregulation of specific miRNAs leads to drug resistance in different cancers and correction of these miRNAs using miRNA mimics or antagomiRs can normalize the gene regulatory network and signaling pathways and sensitize cancerous cells to chemotherapy. Therefore, miRNA-based gene therapy provides an attractive anti-tumor approach for integrated cancer therapy. Here, we will discuss the involvement of microRNAs in chemotherapy resistance and focus on recent advancements in the development and delivery of miRNA-based cancer therapeutics.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Terapia Genética , MicroRNAs/antagonistas & inibidores , Modelos Biológicos , Neoplasias/terapia , RNA Neoplásico/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/metabolismo
9.
Genome Res ; 20(5): 589-99, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20439436

RESUMO

We studied miRNA profiles in 4419 human samples (3312 neoplastic, 1107 nonmalignant), corresponding to 50 normal tissues and 51 cancer types. The complexity of our database enabled us to perform a detailed analysis of microRNA (miRNA) activities. We inferred genetic networks from miRNA expression in normal tissues and cancer. We also built, for the first time, specialized miRNA networks for solid tumors and leukemias. Nonmalignant tissues and cancer networks displayed a change in hubs, the most connected miRNAs. hsa-miR-103/106 were downgraded in cancer, whereas hsa-miR-30 became most prominent. Cancer networks appeared as built from disjointed subnetworks, as opposed to normal tissues. A comparison of these nets allowed us to identify key miRNA cliques in cancer. We also investigated miRNA copy number alterations in 744 cancer samples, at a resolution of 150 kb. Members of miRNA families should be similarly deleted or amplified, since they repress the same cellular targets and are thus expected to have similar impacts on oncogenesis. We correctly identified hsa-miR-17/92 family as amplified and the hsa-miR-143/145 cluster as deleted. Other miRNAs, such as hsa-miR-30 and hsa-miR-204, were found to be physically altered at the DNA copy number level as well. By combining differential expression, genetic networks, and DNA copy number alterations, we confirmed, or discovered, miRNAs with comprehensive roles in cancer. Finally, we experimentally validated the miRNA network with acute lymphocytic leukemia originated in Mir155 transgenic mice. Most of miRNAs deregulated in these transgenic mice were located close to hsa-miR-155 in the cancer network.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Leucemia , MicroRNAs/genética , Neoplasias , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Dosagem de Genes , Humanos , Leucemia/genética , Leucemia/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
10.
Int J Mol Sci ; 14(8): 17085-110, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23965974

RESUMO

The discovery of the biological relevance of non-coding RNA (ncRNAs) molecules represents one of the most significant advances in contemporary molecular biology. Expression profiling of human tumors, based on the expression of miRNAs and other short or long ncRNAs, has identified signatures associated with diagnosis, staging, progression, prognosis, and response to treatment. In this review we will discuss the recent remarkable advancement in the understanding the biological functions of human ncRNAs in cancer, the mechanisms of expression and the therapeutic potential.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , RNA não Traduzido/fisiologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Genes Supressores de Tumor , Humanos , Neoplasias/metabolismo
11.
Cell Death Differ ; 30(6): 1533-1549, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37041291

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide. KRAS is the main oncogenic driver in lung cancer that can be activated by gene mutation or amplification, but whether long non-coding RNAs (lncRNAs) regulate its activation remains unknown. Through gain and loss of function approaches, we identified that lncRNA HIF1A-As2, a KRAS-induced lncRNA, is required for cell proliferation, epithelial-mesenchymal transition (EMT) and tumor propagation in non-small cell lung cancer (NSCLC) in vitro and in vivo. Integrative analysis of HIF1A-As2 transcriptomic profiling reveals that HIF1A-As2 modulates gene expression in trans, particularly regulating transcriptional factor genes including MYC. Mechanistically, HIF1A-As2 epigenetically activates MYC by recruiting DHX9 on MYC promoter, consequently stimulating the transcription of MYC and its target genes. In addition, KRAS promotes HIF1A-As2 expression via the induction of MYC, suggesting HIF1A-As2 and MYC form a double-regulatory loop to strengthen cell proliferation and tumor metastasis in lung cancer. Inhibition of HIF1A-As2 by LNA GapmeR antisense oligonucleotides (ASO) significantly improves sensitization to 10058-F4 (a MYC-specific inhibitor) and cisplatin treatment in PDX and KRASLSLG12D-driven lung tumors, respectively.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Retroalimentação , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
12.
Mod Pathol ; 25(10): 1333-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22699519

RESUMO

We analyzed the in situ molecular correlates of infection from cancer patients treated with reovirus. Melanoma, colorectal, and ovarian cancer samples from such patients showed variable infection of the cancer cells but not the intermingled benign cells. RT in situ PCR showed most cancer cells contained the viral genome with threefold less having productive viral infection as documented by either tubulin or reoviral protein co-expression. Productive infection in the cancer cells was strongly correlated with co-expression of p38 and caspase-3 as well as apoptosis-related death (P<0.001). The cancer cell apoptotic death was due to a marked viral-induced inhibition of microRNA-let-7d that, in turn, upregulated caspase-3 activity. In summary, reovirus shows a striking tropism to cancer cells in clinical samples. A rate-limiting factor of reovirus-induced cancer cell death is productive viral infection that operates via the marked reduction of microRNA-let-7d and concomitant elevated caspase-3 expression.


Assuntos
Apoptose , Neoplasias Colorretais/patologia , Melanoma/patologia , MicroRNAs/metabolismo , Terapia Viral Oncolítica/métodos , Orthoreovirus de Mamíferos/fisiologia , Neoplasias Ovarianas/patologia , Neoplasias Cutâneas/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/virologia , Feminino , Humanos , Melanoma/metabolismo , Melanoma/virologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/virologia , Infecções por Reoviridae/virologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/virologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Proc Natl Acad Sci U S A ; 105(10): 3945-50, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18308931

RESUMO

Acute myeloid leukemia (AML) carrying NPM1 mutations and cytoplasmic nucleophosmin (NPMc+ AML) accounts for about one-third of adult AML and shows distinct features, including a unique gene expression profile. MicroRNAs (miRNAs) are small noncoding RNAs of 19-25 nucleotides in length that have been linked to the development of cancer. Here, we investigated the role of miRNAs in the biology of NPMc+ AML. The miRNA expression was evaluated in 85 adult de novo AML patients characterized for subcellular localization/mutation status of NPM1 and FLT3 mutations using a custom microarray platform. Data were analyzed by using univariate t test within BRB tools. We identified a strong miRNA signature that distinguishes NPMc+ mutated (n = 55) from the cytoplasmic-negative (NPM1 unmutated) cases (n = 30) and includes the up-regulation of miR-10a, miR-10b, several let-7 and miR-29 family members. Many of the down-regulated miRNAs including miR-204 and miR-128a are predicted to target several HOX genes. Indeed, we confirmed that miR-204 targets HOXA10 and MEIS1, suggesting that the HOX up-regulation observed in NPMc+ AML may be due in part by loss of HOX regulators-miRNAs. FLT3-ITD+ samples were characterized by up-regulation of miR-155. Further experiments demonstrated that the up-regulation of miR-155 was independent from FLT3 signaling. Our results identify a unique miRNA signature associated with NPMc+ AML and provide evidence that support a role for miRNAs in the regulation of HOX genes in this leukemia subtype. Moreover, we found that miR-155 was strongly but independently associated with FLT3-ITD mutations.


Assuntos
Citoplasma/metabolismo , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Proteínas Mutantes/genética , Mutação/genética , Proteínas Nucleares/genética , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Proteínas Homeobox A10 , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Nucleofosmina , Fatores de Transcrição/metabolismo , Regulação para Cima/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
15.
Cancer Gene Ther ; 28(3-4): 175-187, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32843741

RESUMO

Non-small-cell lung cancer (NSCLC) is the most prevalent form of lung cancer and has a poor five-year survival rate of 15%. Chemotherapy and targeted therapies have significantly improved patients' prognosis. Nevertheless, after a successful initial response, some patients relapse when cancer cells become resistant to drug treatments, representing an important clinical limitation. Therefore, investigating the mechanisms of drug resistance is of significant importance. Recently, considerable attention has been given to long non-coding RNAs (lncRNAs), a heterogeneous class of regulatory molecules that play essential roles in tumorigenesis by modulating genes and signalling pathways involved in cell growth, metastasis and drug response. In this article, we review recent research findings on the role of lncRNAs in drug resistance in NSCLC, highlighting their mechanisms of action.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , RNA Longo não Codificante/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética
16.
Cell Death Differ ; 28(9): 2673-2689, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34040167

RESUMO

AMP-activated protein kinase (AMPK) is a critical sensor of energy status that coordinates cell growth with energy balance. In non-small cell lung cancer (NSCLC) the role of AMPKα is controversial and its contribution to lung carcinogenesis is not well-defined. Furthermore, it remains largely unknown whether long non-coding RNAs (lncRNAs) are involved in the regulation of AMPK-mediated pathways. Here, we found that loss of AMPKα in combination with activation of mutant KRASG12D increased lung tumour burden and reduced survival in KrasLSLG12D/+/AMPKαfl/fl mice. In agreement, functional in vitro studies revealed that AMPKα silencing increased growth and migration of NSCLC cells. In addition, we identified an AMPKα-modulated lncRNA, KIMAT1 (ENSG00000228709), which in turn regulates AMPKα activation by stabilizing the lactate dehydrogenase B (LDHB). Collectively, our study indicates that AMPKα loss promotes KRAS-mediated lung tumorigenesis and proposes a novel KRAS/KIMAT1/LDHB/AMPKα axis that could be exploited for therapeutic purposes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinogênese , Modelos Animais de Doenças , Humanos , Camundongos
17.
Cancer Res ; 81(7): 1719-1731, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472893

RESUMO

Chromosomal instability (CIN) is a driver of clonal diversification and intratumor heterogeneity, providing genetic diversity that contributes to tumor progression. It is estimated that approximately 80% of solid cancers, including non-small cell lung cancer (NSCLC), exhibit features of CIN, which affects tumor growth and response to therapy. However, the molecular mechanisms connecting CIN to tumor progression are still poorly understood. Through an RNAi screen performed on genes involved in CIN and overexpressed in human lung adenocarcinoma samples, we identified the cytoskeleton-associated protein 2-like (CKAP2L) as a potential oncogene that promotes lung cancer proliferation and growth in vitro and in vivo. Mechanistically, CKAP2L directly interacted with RNA Pol II and regulated transcription elongation of key genes involved in spindle assembly checkpoint, chromosome segregation, cell cycle, and E2F signaling. Furthermore, depletion of CKAP2L increased the sensitivity of NSCLC cells to alvocidib, a pan-CDK inhibitor, leading to a significant reduction of cell proliferation and an increase in cell death. Altogether, these findings shed light on the molecular mechanisms through which CKAP2L, a protein involved in CIN, promotes cancer progression and suggest that its inhibition represents a novel therapeutic strategy in NSCLC. SIGNIFICANCE: These findings demonstrate the oncogenic function of CKAP2L through regulation of transcription elongation and suggest that targeting CKAP2L could enhance therapeutic response in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas do Citoesqueleto/fisiologia , Neoplasias Pulmonares/patologia , Elongação da Transcrição Genética , Células A549 , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Elongação da Transcrição Genética/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Sci Rep ; 11(1): 5374, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686114

RESUMO

Medulloblastoma (MB) is the most common aggressive paediatric brain tumour and, despite the recent progress in the treatments of MB patients, there is still an urgent need of complementary or alternative therapeutic options for MB infants. Cyclin Dependent Kinase inhibitors (CDKi) are at the front-line of novel targeted treatments for multiple cancers and the CDK4/6 specific inhibitor palbociclib has been pre-clinically identified as an effective option for MB cells. Herein, we identified the pan-CDKi dinaciclib as a promising alternative to palbociclib for the suppression of MB cells proliferation. We present evidence supporting dinaciclib's ability to inhibit MB cells in vitro proliferation at considerably lower doses than palbociclib. Sequencing data and pathway analysis suggested that dinaciclib is a potent cell death inducer in MB cells. We found that dinaciclib-triggered apoptosis is triggered by CDK9 inhibition and the resultant reduction in RNA pol II phosphorylation, which leads to the downregulation of the oncogenic marker MYC, and the anti-apoptotic protein MCL-1. Specifically, we demonstrated that MCL-1 is a key apoptotic mediator for MB cells and co-treatment of dinaciclib with BH3 mimetics boosts the therapeutic efficacy of dinaciclib. Together, these findings highlight the potential of multi-CDK inhibition by dinaciclib as an alternative option to CDK4/6 specific inhibition, frequently associated with drug resistance in patients.


Assuntos
Proliferação de Células/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Quinases Ciclina-Dependentes , Indolizinas/farmacologia , Meduloblastoma , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Compostos de Piridínio/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/enzimologia , Meduloblastoma/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo
19.
Nat Commun ; 12(1): 2038, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795683

RESUMO

Wild-type KRAS (KRASWT) amplification has been shown to be a secondary means of KRAS activation in cancer and associated with poor survival. Nevertheless, the precise role of KRASWT overexpression in lung cancer progression is largely unexplored. Here, we identify and characterize a KRAS-responsive lncRNA, KIMAT1 (ENSG00000228709) and show that it correlates with KRAS levels both in cell lines and in lung cancer specimens. Mechanistically, KIMAT1 is a MYC target and drives lung tumorigenesis by promoting the processing of oncogenic microRNAs (miRNAs) through DHX9 and NPM1 stabilization while halting the biogenesis of miRNAs with tumor suppressor function via MYC-dependent silencing of p21, a component of the Microprocessor Complex. KIMAT1 knockdown suppresses not only KRAS expression but also KRAS downstream signaling, thereby arresting lung cancer growth in vitro and in vivo. Taken together, this study uncovers a role for KIMAT1 in maintaining a positive feedback loop that sustains KRAS signaling during lung cancer progression and provides a proof of principle that interfering with KIMAT1 could be a strategy to hamper KRAS-induced tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Longo não Codificante/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Nucleofosmina , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Noncoding RNA ; 6(3)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629922

RESUMO

Lung cancer is associated with a high mortality, with around 1.8 million deaths worldwide in 2018. Non-small-cell lung cancer (NSCLC) accounts for around 85% of cases and, despite improvement in the management of NSCLC, most patients are diagnosed at advanced stage and the five-year survival remains around 15%. This highlights a need to identify novel ways to treat the disease to reduce the burden of NSCLC. Long non-coding RNAs (lncRNAs) are non-coding RNA molecules longer than 200 nucleotides in length which play important roles in gene expression and signaling pathways. Recently, lncRNAs were implicated in cancer, where their expression is dysregulated resulting in aberrant functions. LncRNAs were shown to function as both tumor suppressors and oncogenes in a variety of cancer types. Although there are a few well characterized lncRNAs in NSCLC, many lncRNAs remain un-characterized and their mechanisms of action largely unknown. LncRNAs have success as therapies in neurodegenerative diseases, and having a detailed understanding of their function in NSCLC may guide novel therapeutic approaches and strategies. This review discusses the role of lncRNAs in NSCLC tumorigenesis, highlighting their mechanisms of action and their clinical potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA