Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Cell ; 154(3): 691-703, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23890820

RESUMO

Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models.


Assuntos
Ratos/classificação , Ratos/genética , Animais , Modelos Animais de Doenças , Genoma , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Ratos Endogâmicos
2.
Mol Psychiatry ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355786

RESUMO

Several lines of evidence point to a key role of the hippocampus in Autism Spectrum Disorders (ASD). Altered hippocampal volume and deficits in memory for person and emotion related stimuli have been reported, along with enhanced ability for declarative memories. Mouse models have demonstrated a critical role of the hippocampus in social memory dysfunction, associated with ASD, together with decreased synaptic plasticity. Chondroitin sulfate proteoglycans (CSPGs), a family of extracellular matrix molecules, represent a potential key link between neurodevelopment, synaptic plasticity, and immune system signaling. There is a lack of information regarding the molecular pathology of the hippocampus in ASD. We conducted RNAseq profiling on postmortem human brain samples containing the hippocampus from male children with ASD (n = 7) and normal male children (3-14 yrs old), (n = 6) from the NIH NeuroBioBank. Gene expression profiling analysis implicated molecular pathways involved in extracellular matrix organization, neurodevelopment, synaptic regulation, and immune system signaling. qRT-PCR and Western blotting were used to confirm several of the top markers identified. The CSPG protein BCAN was examined with multiplex immunofluorescence to analyze cell-type specific expression of BCAN and astrocyte morphology. We observed decreased expression of synaptic proteins PSD95 (p < 0.02) and SYN1 (p < 0.02), increased expression of the extracellular matrix (ECM) protease MMP9 (p < 0.03), and decreased expression of MEF2C (p < 0.03). We also observed increased BCAN expression with astrocytes in children with ASD, together with altered astrocyte morphology. Our results point to alterations in immune system signaling, glia cell differentiation, and synaptic signaling in the hippocampus of children with ASD, together with alterations in extracellular matrix molecules. Furthermore, our results demonstrate altered expression of genes implicated in genetic studies of ASD including SYN1 and MEF2C.

3.
Physiol Genomics ; 56(4): 301-316, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145288

RESUMO

The gut-brain axis interconnects the central nervous system (CNS) and the commensal bacteria of the gastrointestinal tract. The composition of the diet consumed by the host influences the richness of the microbial populations. Traumatic brain injury (TBI) produces profound neurocognitive damage, but it is unknown how diet influences the microbiome following TBI. The present work investigates the impact of a chow diet versus a 60% fat diet (HFD) on fecal microbiome populations in juvenile rats following TBI. Twenty-day-old male rats were placed on one of two diets for 9 days before sustaining either a Sham or TBI via the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). Fecal samples were collected at both 1- and 9-days postinjury. Animals were cognitively assessed in the novel object recognition tests at 8 days postinjury. Fecal microbiota DNA was isolated and sequenced. Twenty days of HFD feeding did not alter body weight, but fat mass was elevated in HFD compared with Chow rats. TBI animals had a greater percentage of entries to the novel object quadrant than Sham counterparts, P < 0.05. The Firmicutes/Bacteroidetes ratio was significantly higher in TBI than in the Sham, P < 0.05. Microbiota of the Firmicutes lineage exhibited perturbations by both injury and diet that were sustained at both time points. Linear regression analyses were performed to associate bacteria with metabolic and neurocognitive endpoints. For example, counts of Lachnospiraceae were negatively associated with percent entries into the novel object quadrant. Taken together, these data suggest that both diet and injury produce robust shifts in microbiota, which may have long-term implications for chronic health.NEW & NOTEWORTHY Traumatic brain injury (TBI) produces memory and learning difficulties. Diet profoundly influences the populations of gut microbiota. Following traumatic brain injury in a pediatric model consuming either a healthy or high-fat diet (HFD), significant shifts in bacterial populations occur, of which, some are associated with diet, whereas others are associated with neurocognitive performance. More work is needed to determine whether these microbes can therapeutically improve learning following trauma to the brain.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Criança , Ratos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/genética , Bactérias , Lesões Encefálicas Traumáticas/microbiologia
4.
Physiol Genomics ; 55(2): 79-89, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645670

RESUMO

There is a growing interest in the detection of subtle changes in cardiovascular physiology in response to viral infection to develop better disease surveillance strategies. This is not only important for earlier diagnosis and better prognosis of symptomatic carriers but also useful to diagnose asymptomatic carriers of the virus. Previous studies provide strong evidence of an association between inflammatory biomarker levels and both blood pressure (BP) and heart rate (HR) during infection. The identification of novel biomarkers during an inflammatory event could significantly improve predictions for cardiovascular events. Thus, we evaluated changes in cardiovascular physiology induced in A/Puerto Rico/8/34 (PR8) influenza infections in female and male C57BL/6J mice and compared them with the traditional method of influenza disease detection using body weight (BW). Using radiotelemetry, changes in BP, HR, and activity were studied. Change in BW of infected females was significantly decreased from 5 to 13 days postinfection (dpi), yet alterations in normal physiology including loss of diurnal rhythm and reduced activity was observed starting at about 3 dpi for HR and 4 dpi for activity and BP; continuing until about 13 dpi. In contrast, males had significantly decreased BW 8 to 12 dpi and demonstrated altered physiological measurements for a shorter period compared with females with a reduction starting at 5 dpi for activity, 6 dpi for BP, and 7 dpi for HR until about 12 dpi, 10 dpi, and 9 dpi, respectively. Finally, females and males exhibited different patterns of inflammatory maker expression in lungs at peak disease by analyzing bulk RNA-sequencing data for lungs and Bio-plex cytokine assay for blood collected from influenza-infected and naïve C57BL/6J female and male mice at 7 dpi. In total, this study provides insight into cardiovascular changes and molecular markers to distinguish sex differences in peak disease caused by influenza virus infection.NEW & NOTEWORTHY This study performed longitudinal cardiovascular measurements of influenza viral infection and identified sex difference in both physiological and molecular markers at peak disease.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Feminino , Masculino , Animais , Camundongos , Humanos , Influenza Humana/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Infecções por Orthomyxoviridae/metabolismo
5.
Trends Genet ; 36(7): 499-509, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362446

RESUMO

Progress in the identification of causal genes and understanding of the mechanism underlying kidney disease is hindered by the almost exclusive use of a few animal models with restrictive monogenic backgrounds that may be more resistant to kidney disease compared with humans and, therefore, poor models. Exploring the large genetic diversity in classical animal models, such as mice and rats, and leveraging species diversity will allow us to use the genetic advantages of zebrafish, Drosophila, and other species, to develop both new animal models that are more relevant to the study of human kidney disease and potential therapies.


Assuntos
Modelos Animais de Doenças , Nefropatias/genética , Nefropatias/patologia , Animais , Humanos , Especificidade da Espécie
6.
Physiol Genomics ; 54(10): 402-415, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036458

RESUMO

Chronic spinal cord injury (SCI) results in an increased predisposition to various metabolic problems that can be exacerbated by consuming a diet rich in calories and saturated fat. In addition, gastrointestinal symptoms have been reported after SCI, including intestinal dysbiosis of the gut microbiome. The effects of both diet and SCI on the gut microbiome of adult male Long Evans rats euthanized 16 wk after injury were investigated. The rats were either thoracic spinal contused or received sham procedures. After 12 wk of either a low-fat or high-fat diet, cecal contents were analyzed, revealing significant microbial changes to every taxonomic level below the kingdom level. Shannon α diversity analyses demonstrated a significant difference in diversity between the groups based on the surgical condition of the rats. SCI produced a unique signature of changes in commensal bacteria that were significantly different than Sham. Specific changes in commensal bacteria as a result of diet manipulation had high fidelity with reports in the literature, such as Clostridia, Thiohalorhabdales, and Pseudomonadales. In addition, novel changes in commensal bacteria were identified that are unique dietary influences on SCI. Linear regression analysis on body fat and lean mass showed that a consequence of chronic SCI produces uncoupled associations between some commensal bacteria and body composition. In conclusion, despite tightly controlling the protein content and varying the carbohydrate and fat contents, Sham and SCI rats respond uniquely to diet. These data provide potential direction for therapeutic modulation of the microbiome to improve health and wellness following SCI.


Assuntos
Microbioma Gastrointestinal , Traumatismos da Medula Espinal , Animais , Masculino , Ratos , Bactérias , Carboidratos , Dieta Hiperlipídica , Nutrientes , Ratos Long-Evans
7.
Am J Physiol Heart Circ Physiol ; 322(2): H285-H295, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919457

RESUMO

Preeclampsia is a hypertensive pregnancy disorder with no treatment beyond management of symptoms and delivery of the fetus and placenta. Chronic hypertension increases the risk of developing superimposed preeclampsia. Previous reports showed that 1,3-butanediol attenuates hypertension in rodents; however, the therapeutic potential of 1,3-butanediol for the prevention of preeclampsia has not been investigated. This study tested the hypothesis that attenuating hypertension before pregnancy and through the placentation period via 1,3-butanediol prevents the onset of preeclampsia in female Dahl salt-sensitive (SS/Jr) rats. Female Dahl SS/Jr rats were divided into two groups: 1,3-butanediol treated (20% via drinking water) and control (ad libitum water). Both groups were maintained on low-salt rodent chow (Teklad 7034, 0.3% NaCl; n = 8/group). Animals were treated with 1,3-butanediol for 7 wk (baseline), mated, and treated through day 12 of pregnancy. 1,3-Butanediol treatment increased plasma ß-hydroxybutyrate (metabolite of 1,3-butanediol) that negatively correlated with maternal body weight in late pregnancy. Mean arterial pressure was lower in the treated group at baseline, early, and mid pregnancy, but no difference was observed in late pregnancy after treatment ended. Uterine artery resistance index (UARI) was reduced in the treated dams. No adverse fetal effects were observed, and there were no differences in pup weight or length. Placentas from treated dams had decreased vascular endothelial growth factor levels as well as decreased placental basal zone thickness and increased labyrinth zone thickness. These findings support the therapeutic role of physiological ketosis via 1,3-butanediol as a potential therapeutic approach for managing chronic hypertension, thereby preventing and mitigating adverse pregnancy outcomes associated with preeclampsia.NEW & NOTEWORTHY A ketogenic diet or increased ß-hydroxybutyrate levels can reduce hypertension, but the potential of 1,3-butanediol, a ß-hydroxybutyrate precursor, for treatment of preeclampsia is unknown. We hypothesized that attenuating hypertension before and during pregnancy via 1,3-butanediol prevents preeclampsia in Dahl Salt-sensitive rats. 1,3-Butanediol significantly lowered blood pressure and improved uterine artery resistance with no observable adverse fetal effects. Physiological ketosis via 1,3-butanediol may be a potential therapeutic approach for managing hypertension and mitigating adverse pregnancy outcomes.


Assuntos
Butileno Glicóis/uso terapêutico , Pré-Eclâmpsia/tratamento farmacológico , Ácido 3-Hidroxibutírico/sangue , Animais , Peso Corporal , Butileno Glicóis/administração & dosagem , Butileno Glicóis/efeitos adversos , Suplementos Nutricionais , Feminino , Cetose , Fenótipo , Placenta/metabolismo , Pré-Eclâmpsia/prevenção & controle , Gravidez , Ratos , Ratos Endogâmicos Dahl , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328808

RESUMO

As the resident immune cells of the central nervous system, microglia have a wide range of functions such as surveillance, phagocytosis, and signaling through production of chemokines and cytokines. Recent studies have identified and characterized macrophages residing at the meninges, a series of layers surrounding the brain and spinal cord. While perivascular microglia within the brain parenchyma increase following chronic hypertension, there are no reports of changes at the meninges, and specifically, associated with the pial vasculature. Thus, we used female Sprague Dawley and Dahl salt-sensitive (SS/Jr) rat brains, stained for ionized calcium-binding adapter molecule (Iba1), and characterized microglia/macrophages associated with pial vessels in the posterior brain. Results indicate that Iba1+ pial vessel-associated microglia (PVAM) completely surrounded the vessels in brains from the Dahl-SS/Jr rats. PVAM density was significantly higher and distance between PVAMs lower in Dahl-SS/Jr compared to the Sprague Dawley rat brains. Pregnancy history did not affect these findings. While the functional role of these cells are not known, we contextualize our novel findings with that of other studies assessing or characterizing myeloid cells at the borders of the CNS (meninges and choroid plexus) and perivascular macrophages and propose their possible origin in the Dahl-SS/Jr model of chronic hypertension.


Assuntos
Hipertensão , Microglia , Animais , Pressão Sanguínea/fisiologia , Feminino , Macrófagos , Gravidez , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , História Reprodutiva
9.
Physiol Genomics ; 53(3): 125-136, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491590

RESUMO

Preeclampsia is a progressive hypertensive disorder of pregnancy affecting 2%-8% of pregnancies globally. Preexisting chronic hypertension is a major risk factor associated with developing preeclampsia, and growing evidence suggests a role for the gut microbiome in the development of preeclampsia. However, neither alterations in the gut microbiome associated with preeclampsia nor the mechanisms involved are fully understood. In this study, we tested the hypothesis that normal gestational maternal gut microbiome remodeling is impaired in the Dahl salt-sensitive (Dahl S) rat model of superimposed preeclampsia. Gut microbiome profiles of pregnant Dahl S, normal pregnant Sprague-Dawley (SD), and matched virgin controls were assessed by 16S rRNA gene sequencing at baseline; during early, middle, and late pregnancy; and 1-wk postpartum. Dahl S rats had significantly higher abundance in Proteobacteria, and multiple genera were significantly different from SD rats at baseline. The pregnant SD displayed a significant increase in Proteobacteria and genera such as Helicobacter, but these were not different between pregnant and virgin Dahl S rats. By late pregnancy, Dahl S rats had significantly lower α-diversity and Firmicutes compared with their virgin Dahl S controls. ß-diversity was significantly different among groups (P < 0.001). KEGG metabolic pathways including those associated with short-chain fatty acids were different in Dahl S pregnancy but not in SD pregnancy. These results reveal an association between chronic hypertension and gut microbiome dysbiosis which may hinder pregnancy-specific remodeling in the gut microbial composition during superimposed preeclampsia.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Hipertensão/fisiopatologia , Pré-Eclâmpsia/fisiopatologia , Animais , Bactérias/classificação , Bactérias/genética , Doença Crônica , Disbiose/genética , Disbiose/microbiologia , Disbiose/fisiopatologia , Feminino , Microbioma Gastrointestinal/genética , Variação Genética , Humanos , Filogenia , Gravidez , RNA Ribossômico 16S/genética , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Especificidade da Espécie
10.
Physiol Genomics ; 53(5): 193-205, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870723

RESUMO

Vertical sleeve gastrectomy (VSG) is a surgical weight loss procedure that resects 80% of the stomach, creating a tube linking the esophagus to the duodenum. Because of the efficacy and relative simplicity of VSG, it is preferred in the United States, with VSG currently at >61% of bariatric surgeries performed. Surprisingly, there has never been a complete molecular characterization of the human stomach greater curvature's fundus and corpus. Here we compare and contrast the molecular makeup of these regions. We performed a prospective cohort study to obtain gastric tissue samples from patients undergoing elective VSG. Paired fundus and corpus samples were obtained. Whole genome transcriptome analysis was performed by RNA sequencing (N = 10), with key findings validated by qPCR (N = 24). Participants were primarily female (95.8%) and White (79.15%). Mean body mass index, body weight, and age were 46.1 kg/m2, 121.6 kg, and 43.29 yr, respectively. Overall, 432 gene transcripts were significantly different between the fundus and the corpus (P < 0.05). A significant correlation was found between the RNA sequencing dataset and qPCR validation, demonstrating robust gene expression differences between the fundus and the corpus. Significant genes included progastricsin, acidic chitinase, and gastokine 1 and 2 in both the fundus and the corpus. Of the very highly expressed genes in both regions, 87% were present in both the stomach's fundus and corpus, indicating substantial overlap. Despite significant overlap in the greater curvature gene signature, regional differences exist within the fundus and the corpus. Given that the mechanism of VSG is partly unresolved, the potential that the resected tissue may express genes that influence long-term body weight regulation is unknown and could influence VSG outcomes.


Assuntos
Estômago/fisiologia , Estômago/cirurgia , Transcriptoma/genética , Adulto , Cirurgia Bariátrica/métodos , Feminino , Gastrectomia/métodos , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Am J Physiol Renal Physiol ; 320(6): F1093-F1105, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843272

RESUMO

Hypertension and diabetes are the greatest factors influencing the progression of chronic kidney disease (CKD). Investigation into the role of nephron number in CKD alone or with hypertension has revealed a strong inverse relationship between the two; however, not much is known about the connection between nephron number and diabetic kidney disease. The heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, a novel model of nephron deficiency, provides a unique opportunity to study the association between nephron number and hypertension and diabetes on CKD. HSRA rats exhibit failure of one kidney to develop in 50-75% of offspring, whereas the remaining offspring are born with two kidneys. Rats born with one kidney (HSRA-S) develop significant renal injury with age compared with two-kidney littermates (HSRA-C). The induction of hypertension as a secondary stressor leads to significantly more renal injury in HSRA-S compared with HSRA-C rats and nephrectomized HSRA-C (HSRA-UNX) rats. The present study sought to address the hypothesis that nephron deficiency in the HSRA rat would hasten renal injury in the presence of a secondary stressor of hyperglycemia. HSRA animals did not exhibit diabetes-related traits at any age; thus, streptozotocin (STZ) was used to induce hyperglycemia in HSRA-S, HSRA-C, and HSRA-UNX rats. STZ- and vehicle-treated animals were followed for 15 wk. STZ-treated animals developed robust hyperglycemia, but in contrast to the response to hypertension, neither HSRA-S nor HSRA-UNX animals developed proteinuria compared with vehicle treatment. In total, our data indicate that hyperglycemia from STZ alone does not have a significant impact on the onset or progression of injury in young one-kidney HSRA animals.NEW & NOTEWORTHY The HSRA rat, a novel model of nephron deficiency, provides a unique opportunity to study the association between nephron number and confounding cardiovascular complications that impact kidney health. Although hypertension was previously shown to exacerbate renal injury in young HSRA animals, diabetic hyperglycemia did not lead to worse renal injury, suggesting that nephron number has limited impact on kidney injury, at least in this model.


Assuntos
Envelhecimento , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/patologia , Rim Único/metabolismo , Animais , Hiperglicemia , Rim/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos
12.
Am J Physiol Heart Circ Physiol ; 320(2): H535-H548, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275518

RESUMO

Preeclampsia is characterized by increases in blood pressure and proteinuria in late pregnancy, and neurological symptoms can appear in the form of headaches, blurred vision, cerebral edema, and, in the most severe cases, seizures (eclampsia). The causes for these cerebral manifestations remain unknown, so the use of animal models that mimic preeclampsia is essential to understanding its pathogenesis. The Dahl salt-sensitive (Dahl SS/jr) rat model develops spontaneous preeclampsia superimposed on chronic hypertension; therefore, we hypothesized that the Dahl SS/jr rat would display cerebrovascular features similar to those seen in human preeclampsia. Furthermore, we predicted that this model would allow for the identification of mechanisms underlying these changes. The pregnant Dahl SS/jr rat displayed increased cerebral edema and blood-brain barrier disruption despite tighter control of cerebral blood flow autoregulation and vascular smooth muscle myogenic tone. Analysis of cerebral endothelial cell morphology revealed increased opening of tight junctions, basement membrane dissolution, and vesicle formation. RNAseq analysis identified that genes related to endothelial cell tight junctions and blood-brain barrier integrity were differentially expressed in cerebral vessels from pregnant Dahl SS/jr compared with healthy pregnant Sprague Dawley rats. Overall, our data reveal new insights into mechanisms involved in the cerebrovascular dysfunction of preeclampsia.NEW & NOTEWORTHY This study uses the Dahl SS/jr rat as a preclinical model of spontaneous superimposed preeclampsia to demonstrate uncoupling of cerebral vascular permeability and blood-brain barrier disruption from cerebral blood flow autoregulatory dysfunction and myogenic tone. Additionally, the data presented in this study lay the foundational framework on which future experiments assessing specific transcellular transport components such as individual transporter protein expression and components of the vesicular transport system (caveolae) can be built to help reveal a potential direct mechanistic insight into the causes of cerebrovascular complications during preeclamptic pregnancies.


Assuntos
Barreira Hematoencefálica/metabolismo , Edema Encefálico/patologia , Permeabilidade Capilar , Células Endoteliais/ultraestrutura , Pré-Eclâmpsia/patologia , Animais , Membrana Basal/ultraestrutura , Barreira Hematoencefálica/ultraestrutura , Edema Encefálico/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/ultraestrutura , Feminino , Pré-Eclâmpsia/metabolismo , Gravidez , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Junções Íntimas/ultraestrutura
13.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R125-R138, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34105357

RESUMO

The pregnant Dahl salt-sensitive (S) rat is an established preclinical model of superimposed spontaneous preeclampsia characterized by exacerbated hypertension, increased urinary protein excretion, and increased fetal demise. Because of the underlying immune system dysfunction present in preeclamptic pregnancies in humans, we hypothesized that the pregnant Dahl S rat would also have an altered immune status. Immune system activation was assessed during late pregnancy in the Dahl S model and compared with healthy pregnant Sprague-Dawley (SD) rats subjected to either a sham procedure or a procedure to reduce uterine perfusion pressure (RUPP). Circulating immunoglobulin and cytokine levels were measured by enzyme-linked immunosorbent assay (ELISA) and Milliplex bead assay, respectively, and percentages of circulating, splenic, and placental immune cells were determined using flow cytometry. The pregnant Dahl S rat exhibited an increase in CD4+ T cells, and specifically TNFα+CD4+ T cells, in the spleen compared with virgin Dahl S rats. The Dahl also had increased neutrophils and decreased B cells in the peripheral blood as compared with Dahl virgin rats. SD rats that received the RUPP procedure had increases in circulating monocytes and increased IFN-É£+CD4+ splenic T cells. Together these findings suggest that dysregulated T cell activity is an important factor in both the pregnant Dahl S rats and SD rats after the RUPP procedure.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/sangue , Imunoglobulinas/sangue , Placenta/imunologia , Pré-Eclâmpsia/imunologia , Baço/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Idade Gestacional , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Placenta/metabolismo , Pré-Eclâmpsia/sangue , Gravidez , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Baço/metabolismo
14.
J Mol Cell Cardiol ; 145: 112-121, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32574573

RESUMO

INTRODUCTION: Macrophages and neutrophils are primary leukocytes involved in the inflammatory response to myocardial infarction (MI). While interleukin (IL)-4 is an in vitro anti-inflammatory stimulus, the MI myocardium does not express a considerable amount of IL-4 but does express IL4 receptors. We hypothesized that continuous exogenous IL-4 infusion starting 24 h after MI would promote a polarization switch in inflammatory cells towards a reparative phenotype. METHODS: C57BL/6J male mice (3-6 months of age) were subcutaneously infused with either saline (n = 17) or IL-4 (20 ng/g/day; n = 17) beginning 24 h after MI and evaluated at MI day 3. RESULTS: Macrophages and neutrophils were isolated ex vivo from the infarct region and examined. Exogenous IL-4 decreased pro-inflammatory Ccl3, Il12a, Tnfa, and Tgfb1 in neutrophils and increased anti-inflammatory Arg1 and Ym1 in macrophages (all p < .05). Tissue clearance by IL-4 treated neutrophils was not different, while selective phagocytosis of neutrophils doubled in IL-4 treated macrophages (p < .05). Of 24,339 genes examined by RNA-sequencing, 2042 genes were differentially expressed in macrophages from IL-4 stimulated infarct (all FDR p < .05). Pdgfc gene expression was ranked first, increasing 3-fold in macrophages stimulated with IL-4 (p = 1 × 10-9). Importantly, changes in macrophage physiology and transcriptome occurred in the absence of global LV effects. Bone marrow derived monocytes stimulated with mouse recombinant PDGF-CC protein (10 µg/ml) or PDGF-CC blocking antibody (200 ng/ml) did not change Arg1 or Ym1 expression, indicating the in vivo effect of IL-4 to stimulate macrophage anti-inflammatory gene expression was independent of PDGF-CC. CONCLUSIONS: Our results indicate that exogenous IL-4 promotes inflammation resolution by turning off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to mediate removal of apoptotic neutrophils.


Assuntos
Inflamação/patologia , Interleucina-4/farmacologia , Macrófagos/patologia , Infarto do Miocárdio/patologia , Neutrófilos/patologia , Fagocitose/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Polaridade Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/complicações , Inflamação/genética , Linfocinas/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Neutrófilos/efeitos dos fármacos , Fenótipo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
Physiol Genomics ; 52(1): 56-70, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841396

RESUMO

The HSRA rat is a model of congenital abnormalities of the kidney and urogenital tract (CAKUT). Our laboratory has used this model to investigate the role of nephron number (functional unit of the kidney) in susceptibility to develop kidney disease as 50-75% offspring are born with a single kidney (HSRA-S), while 25-50% are born with two kidneys (HSRA-C). HSRA-S rats develop increased kidney injury and hypertension with age compared with nephrectomized two-kidney animals (HSRA-UNX), suggesting that even slight differences in nephron number can be an important driver in decline in kidney function. The HSRA rat was selected and inbred from a family of outbred heterogeneous stock (NIH-HS) rats that exhibited a high incidence of CAKUT. The HS model was originally developed from eight inbred strains (ACI, BN, BUF, F344, M520, MR, WKY, and WN). The genetic make-up of the HSRA is therefore a mosaic of these eight inbred strains. Interestingly, the ACI progenitor of the HS model exhibits CAKUT in 10-15% of offspring with the genetic cause being attributed to the presence of a long-term repeat (LTR) within exon 1 of the c-Kit gene. Our hypothesis is that the HSRA and ACI share this common genetic cause, but other alleles in the HSRA genome contribute to the increased penetrance of CAKUT (75% HSRA vs. 15% in ACI). To facilitate genetic studies and better characterize the model, we sequenced the whole genome of the HSRA to a depth of ~50×. A genome-wide variant analysis of high-impact variants identified a number of novel genes that could be linked to CAKUT in the HSRA model. In summary, the identification of new genes/modifiers that lead to CAKUT/loss of one kidney in the HSRA model will provide greater insight into association between kidney development and susceptibility to develop cardiovascular disease later in life.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Néfrons/embriologia , Organogênese/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Sequenciamento Completo do Genoma , Animais , Sequência de Bases , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Genoma , Genoma Mitocondrial , Íntrons/genética , Mitocôndrias/genética , Filogenia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos
16.
Am J Physiol Renal Physiol ; 319(1): F106-F114, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32508113

RESUMO

Thirty-seven million people in the United States are estimated to have chronic kidney disease (CKD). Hypertension (HTN) is the second leading risk factor for developing kidney disease. A recent study reported that increasing levels of ß-hydroxybutyrate levels by administration of its precursor, 1,3-butanediol, decreased salt-induced HTN in male Dahl salt-sensitive (S) rats. The effect of 1,3-butanediol on hypertensive kidney disease in female rats or the absence of high salt has not been investigated. This study tested the hypothesis that 1,3-butanediol attenuates HTN and the progression of CKD in female S-SHR(11) rats. The S-SHR(11) strain is a congenic rat strain generated from genetic modification of the Dahl S rat, previously characterized as a model of accelerated renal disease. Rats received 1,3-butanediol (20% via drinking water) or control for 10 wk and were maintained on a 0.3% NaCl rodent diet (n = 12-14 rats/group). Blood pressure was measured after 6 and 9 wk of treatment by tail-cuff plethysmography; after 10 wk, urine and tissues were collected. Activity of the treatment was confirmed by measuring plasma ß-hydroxybutyrate levels, which were greater in the treated group. The 1,3-butanediol-treated group had lower systolic blood pressure, proteinuria, plasma creatinine, and renal fibrosis after 9 wk of treatment compared with controls. The treated group had significantly smaller spleens and increased the renal anti-inflammatory molecules interleukin-10 and granulocyte-macrophage colony-stimulating factor, suggesting reduced inflammation. The present data demonstrate that 1,3-butanediol lowers blood pressure and renal injury in female rats and could be a novel nutritional intervention for the treatment of CKD.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Butileno Glicóis/uso terapêutico , Hipertensão/tratamento farmacológico , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Butileno Glicóis/farmacologia , Progressão da Doença , Feminino , Hipertensão/fisiopatologia , Rim/fisiopatologia , Ratos , Ratos Endogâmicos SHR , Insuficiência Renal Crônica/fisiopatologia
17.
Am J Physiol Renal Physiol ; 318(4): F911-F921, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068459

RESUMO

The present study examined whether development of renal injury in the nondiabetic obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) strain is associated with elevations in glomerular filtration rate and renal lipid accumulation. Baseline mean arterial pressure at 6 wk of age was similar between Dahl salt-sensitive wild-type (SSWT) and SSLepRmutant rats. However, by 18 wk of age, the SSLepRmutant strain developed hypertension, while the elevation in mean arterial pressure was not as severe in SSWT rats (192 ± 4 and 149 ± 6 mmHg, respectively). At baseline, proteinuria was fourfold higher in SSLepRmutant than SSWT rats and remained elevated throughout the study. The early development of progressive proteinuria was associated with renal hyperfiltration followed by a decline in renal function over the course of study in the SSLepRmutant compared with SSWT rats. Kidneys from the SSLepRmutant strain displayed more glomerulosclerosis and glomerular lipid accumulation than SSWT rats. Glomeruli were isolated from the renal cortex of both strains at 6 and 18 wk of age, and RNA sequencing was performed to identify genes and pathways driving glomerular injury. We observed significant increases in expression of the influx lipid transporters, chemokine (C-X-C motif) ligand 16 (Cxcl16) and scavenger receptor and fatty acid translocase (Cd36), respectively, and a significant decrease in expression of the efflux lipid transporter, ATP-binding cassette subfamily A member 2 (Abca2; cholesterol efflux regulatory protein 2), in SSLepRmutant compared with SSWT rats at 6 and 18 wk of age, which were validated by RT-PCR analysis. These data suggest an association between glomerular hyperfiltration and glomerular lipid accumulation during the early development of proteinuria associated with obesity.


Assuntos
Tecido Adiposo/metabolismo , Hemodinâmica , Hipertensão/metabolismo , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Metabolismo dos Lipídeos , Mutação , Obesidade/metabolismo , Receptores para Leptina/genética , Circulação Renal , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/fisiopatologia , Adiposidade , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Taxa de Filtração Glomerular , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Nefropatias/genética , Nefropatias/patologia , Nefropatias/fisiopatologia , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Metabolismo dos Lipídeos/genética , Obesidade/genética , Obesidade/patologia , Obesidade/fisiopatologia , Fenótipo , Proteinúria/metabolismo , Proteinúria/patologia , Proteinúria/fisiopatologia , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta
18.
Genes Dev ; 26(8): 830-45, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22508727

RESUMO

Mutant p53 (mtp53) promotes chemotherapy resistance through multiple mechanisms, including disabling proapoptotic proteins and regulating gene expression. Comparison of genome wide analysis of mtp53 binding revealed that the ETS-binding site motif (EBS) is prevalent within predicted mtp53-binding sites. We demonstrate that mtp53 regulates gene expression through EBS in promoters and that ETS2 mediates the interaction with this motif. Importantly, we identified TDP2, a 5'-tyrosyl DNA phosphodiesterase involved in the repair of DNA damage caused by etoposide, as a transcriptional target of mtp53. We demonstrate that suppression of TDP2 sensitizes mtp53-expressing cells to etoposide and that mtp53 and TDP2 are frequently overexpressed in human lung cancer; thus, our analysis identifies a potentially "druggable" component of mtp53's gain-of-function activity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/farmacologia , Neoplasias Pulmonares/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Humanos , Neoplasias Pulmonares/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Diester Fosfórico Hidrolases , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética
19.
Physiol Genomics ; 51(8): 342-355, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125289

RESUMO

Preeclampsia (PE), a multifactorial pregnancy-specific syndrome accounting for up to 8% of pregnancy complications, is a leading cause of maternal and fetal morbidity and mortality. PE is also associated with long-term risk of hypertension and stroke for both mother and fetus. Currently, the only "cure" is delivery of the baby and placenta, largely because the pathogenesis of PE is not yet fully understood. PE is associated with impaired vascular remodeling at the maternal-fetal interface and placental insufficiency; however, specific factors contributing to this impairment have not been identified. To identify molecular pathways involved in PE, we examined temporal transcriptomic changes occurring within the uterus, uterine implantation sites, and placentae from the Dahl salt-sensitive (Dahl S) rat model of superimposed PE compared with Sprague Dawley (SD) rats. We hypothesized that targeted gene analysis and whole transcriptome analysis would identify genetic factors that contribute to development of the preeclamptic phenotype in the Dahl S rat and unveil novel biomarkers, therapeutic targets, and mechanistic pathways in PE. Quantitative real-time PCR (qRT-PCR) and whole genome microarray analysis were performed on isolated total RNA from uterus (day 0), uterine implantation sites (days 7 and 10), and placenta (days 14 and 20). We found 624, 332, 185, and 366 genes to be differentially expressed between Dahl S (PE) and SD (normal pregnancy) on days 0, 7, 10, and 14, respectively. Our data revealed numerous pathways that may play a role in the pathophysiology of spontaneous superimposed PE and allow for further investigation of novel therapeutic targets and biomarker development.


Assuntos
Cronologia como Assunto , Perfilação da Expressão Gênica/métodos , Pré-Eclâmpsia/genética , Gravidez/genética , Transcriptoma , Animais , Sequência de Bases/genética , Biomarcadores , Modelos Animais de Doenças , Feminino , Placenta/metabolismo , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Útero/metabolismo , Sequenciamento Completo do Genoma
20.
Basic Res Cardiol ; 114(2): 6, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635789

RESUMO

Cardiac fibroblasts are the major producers of extracellular matrix (ECM) to form infarct scar. We hypothesized that fibroblasts undergo a spectrum of phenotype states over the course of myocardial infarction (MI) from early onset to scar formation. Fibroblasts were isolated from the infarct region of C57BL/6J male mice (3-6 months old, n = 60) at days 0 (no MI control) and 1, 3, or 7 after MI. Whole transcriptome analysis was performed by RNA-sequencing. Of the genes sequenced, 3371 were differentially expressed after MI. Enrichment analysis revealed that MI day 1 fibroblasts displayed pro-inflammatory, leukocyte-recruiting, pro-survival, and anti-migratory phenotype through Tnfrsf9 and CD137 signaling. MI day 3 fibroblasts had a proliferative, pro-fibrotic, and pro-angiogenic profile with elevated Il4ra signaling. MI day 7 fibroblasts showed an anti-angiogenic homeostatic-like myofibroblast profile and with a step-wise increase in Acta2 expression. MI day 7 fibroblasts relied on Pik3r3 signaling to mediate Tgfb1 effects and Fgfr2 to regulate PI3K signaling. In vitro, the day 3 MI fibroblast secretome stimulated angiogenesis, while day 7 MI fibroblast secretome repressed angiogenesis through Thbs1 signaling. Our results reveal novel mechanisms for fibroblasts in expressing pro-inflammatory molecules and regulating angiogenesis following MI.


Assuntos
Inflamação/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Miofibroblastos/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/citologia , Fenótipo , Remodelação Ventricular/fisiologia , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA