Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 183(4): 1169-1182, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23933064

RESUMO

Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1(-/-) (Sphk1(-/-)), sphingosine kinase 2(-/-) (Sphk2(-/-)), and S1P lyase(+/-) (Sgpl1(+/-)) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1(-/-), but not Sphk2(-/-) or Sgpl1(+/-), mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling-regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia.


Assuntos
Displasia Broncopulmonar/enzimologia , Displasia Broncopulmonar/prevenção & controle , Hiperóxia/complicações , Lisofosfolipídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Esfingosina/análogos & derivados , Aldeído Liases/deficiência , Aldeído Liases/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Humanos , Hiperóxia/enzimologia , Hiperóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidase 4 , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pneumonia/complicações , Pneumonia/patologia , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA