Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Robot AI ; 7: 561660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501325

RESUMO

For naive robots to become truly autonomous, they need a means of developing their perceptive capabilities instead of relying on hand crafted models. The sensorimotor contingency theory asserts that such a way resides in learning invariants of the sensorimotor flow. We propose a formal framework inspired by this theory for the description of sensorimotor experiences of a naive agent, extending previous related works. We then use said formalism to conduct a theoretical study where we isolate sufficient conditions for the determination of a sensory prediction function. Furthermore, we also show that algebraic structure found in this prediction can be taken as a proxy for structure on the motor displacements, allowing for the discovery of the combinatorial structure of said displacements. Both these claims are further illustrated in simulations where a toy naive agent determines the sensory predictions of its spatial displacements from its uninterpreted sensory flow, which it then uses to infer the combinatorics of said displacements.

2.
Front Neurorobot ; 12: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30297995

RESUMO

Over the last 20 years, a significant part of the research in exploratory robotics partially switches from looking for the most efficient way of exploring an unknown environment to finding what could motivate a robot to autonomously explore it. Moreover, a growing literature focuses not only on the topological description of a space (dimensions, obstacles, usable paths, etc.) but rather on more semantic components, such as multimodal objects present in it. In the search of designing robots that behave autonomously by embedding life-long learning abilities, the inclusion of mechanisms of attention is of importance. Indeed, be it endogenous or exogenous, attention constitutes a form of intrinsic motivation for it can trigger motor command toward specific stimuli, thus leading to an exploration of the space. The Head Turning Modulation model presented in this paper is composed of two modules providing a robot with two different forms of intrinsic motivations leading to triggering head movements toward audiovisual sources appearing in unknown environments. First, the Dynamic Weighting module implements a motivation by the concept of Congruence, a concept defined as an adaptive form of semantic saliency specific for each explored environment. Then, the Multimodal Fusion and Inference module implements a motivation by the reduction of Uncertainty through a self-supervised online learning algorithm that can autonomously determine local consistencies. One of the novelty of the proposed model is to solely rely on semantic inputs (namely audio and visual labels the sources belong to), in opposition to the traditional analysis of the low-level characteristics of the perceived data. Another contribution is found in the way the exploration is exploited to actively learn the relationship between the visual and auditory modalities. Importantly, the robot-endowed with binocular vision, binaural audition and a rotating head-does not have access to prior information about the different environments it will explore. Consequently, it will have to learn in real-time what audiovisual objects are of "importance" in order to rotate its head toward them. Results presented in this paper have been obtained in simulated environments as well as with a real robot in realistic experimental conditions.

3.
Neural Netw ; 105: 371-392, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29940487

RESUMO

In line with the sensorimotor contingency theory, we investigate the problem of the perception of space from a fundamental sensorimotor perspective. Despite its pervasive nature in our perception of the world, the origin of the concept of space remains largely mysterious. For example in the context of artificial perception, this issue is usually circumvented by having engineers pre-define the spatial structure of the problem the agent has to face. We here show that the structure of space can be autonomously discovered by a naive agent in the form of sensorimotor regularities, that correspond to so called compensable sensory experiences: these are experiences that can be generated either by the agent or its environment. By detecting such compensable experiences the agent can infer the topological and metric structure of the external space in which its body is moving. We propose a theoretical description of the nature of these regularities and illustrate the approach on a simulated robotic arm equipped with an eye-like sensor, and which interacts with an object. Finally we show how these regularities can be used to build an internal representation of the sensor's external spatial configuration.


Assuntos
Modelos Neurológicos , Robótica/métodos , Percepção Espacial , Braço/fisiologia , Retroalimentação Sensorial , Humanos
4.
IEEE Trans Neural Netw ; 21(11): 1766-79, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20858579

RESUMO

In this paper, we propose an extension of a self-organizing map called self-organizing multilayer perceptron (SOMLP) whose purpose is to achieve quantization of spaces of functions. Based on the use of multilayer perceptron networks, SOMLP comprises the unsupervised as well as supervised learning algorithms. We demonstrate that it is possible to use the commonly used vector quantization algorithms (LVQ algorithms) to build new algorithms called functional quantization algorithms (LFQ algorithms). The SOMLP can be used to model nonlinear and/or nonstationary complex dynamic processes, such as speech signals. While most of the functional data analysis (FDA) research is based on B-spline or similar univariate functions, the SOMLP algorithm allows quantization of function with high dimensional input space. As a consequence, classical FDA methods can be outperformed by increasing the dimensionality of the input space of the functions under analysis. Experiments on artificial and real world examples are presented which illustrate the potential of this approach.


Assuntos
Algoritmos , Inteligência Artificial , Computação Matemática , Redes Neurais de Computação , Dinâmica não Linear , Processamento de Sinais Assistido por Computador , Interface para o Reconhecimento da Fala/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA