RESUMO
BACKGROUND: Several bioinformatics pipelines have been developed to detect sequences from viruses that integrate into the human genome because of the health relevance of these integrations, such as in the persistence of viral infection and/or in generating genotoxic effects, often progressing into cancer. Recent genomics and metagenomics analyses have shown that viruses also integrate into the genome of non-model organisms (i.e., arthropods, fish, plants, vertebrates). However, rarely studies of endogenous viral elements (EVEs) in non-model organisms have gone beyond their characterization from reference genome assemblies. In non-model organisms, we lack a thorough understanding of the widespread occurrence of EVEs and their biological relevance, apart from sporadic cases which nevertheless point to significant roles of EVEs in immunity and regulation of expression. The concomitance of repetitive DNA, duplications and/or assembly fragmentations in a genome sequence and intrasample variability in whole-genome sequencing (WGS) data could determine misalignments when mapping data to a genome assembly. This phenomenon hinders our ability to properly identify integration sites. RESULTS: To fill this gap, we developed ViR, a pipeline which solves the dispersion of reads due to intrasample variability in sequencing data from both single and pooled DNA samples thus ameliorating the detection of integration sites. We tested ViR to work with both in silico and real sequencing data from a non-model organism, the arboviral vector Aedes albopictus. Potential viral integrations predicted by ViR were molecularly validated supporting the accuracy of ViR results. CONCLUSION: ViR will open new venues to explore the biology of EVEs, especially in non-model organisms. Importantly, while we generated ViR with the identification of EVEs in mind, its application can be extended to detect any lateral transfer event providing an ad-hoc sequence to interrogate.
Assuntos
Mosquitos Vetores , Integração Viral , Sequenciamento Completo do Genoma , Animais , Biologia Computacional , Genoma Viral , Genômica , Humanos , Integração Viral/genéticaRESUMO
Horizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus. Thus, nrEVEs may constitute a heritable, sequence-specific mechanism for antiviral immunity, analogous to piRNA-mediated silencing of transposable elements. Here, we combine population genomics and evolutionary approaches to analyse the genomic architecture of nrEVEs in A. aegypti. We conducted a genome-wide screen for adaptive nrEVEs and searched for novel population-specific nrEVEs in the genomes of 80 individual wild-caught mosquitoes from five geographical populations. We show a dynamic landscape of nrEVEs in mosquito genomes and identified five novel nrEVEs derived from two currently circulating viruses, providing evidence of the environmental-dependent modification of a piRNA cluster. Overall, our results show that virus endogenization events are complex with only a few nrEVEs contributing to adaptive evolution in A. aegypti.
Assuntos
Aedes , Aedes/genética , Animais , Genômica , Metagenômica , Mosquitos Vetores/genética , RNA Interferente Pequeno/genéticaRESUMO
The success of oral infection by viruses depends on their capacity to overcome the gut epithelial barrier of their host to crossing over apical, mucous extracellular matrices. As orally transmitted viruses, densoviruses, are also challenged by the complexity of the insect gut barriers, more specifically by the chitinous peritrophic matrix, that lines and protects the midgut epithelium; how capsids stick to and cross these barriers to reach their final cell destination where replication goes has been poorly studied in insects. Here, we analyzed the early interaction of the Junonia coenia densovirus (JcDV) with the midgut barriers of caterpillars from the pest Spodoptera frugiperda. Using combination of imaging, biochemical, proteomic and transcriptomic analyses, we examined in vitro, ex vivo and in vivo the early interaction of the capsids with the peritrophic matrix and the consequence of early oral infection on the overall gut function. We show that the JcDV particle rapidly adheres to the peritrophic matrix through interaction with different glycans including chitin and glycoproteins, and that these interactions are necessary for oral infection. Proteomic analyses of JcDV binding proteins of the peritrophic matrix revealed mucins and non-mucins proteins including enzymes already known to act as receptors for several insect pathogens. In addition, we show that JcDV early infection results in an arrest of N-Acetylglucosamine secretion and a disruption in the integrity of the peritrophic matrix, which may help viral particles to pass through. Finally, JcDV early infection induces changes in midgut genes expression favoring an increased metabolism including an increased translational activity. These dysregulations probably participate to the overall dysfunction of the gut barrier in the early steps of viral pathogenesis. A better understanding of early steps of densovirus infection process is crucial to build biocontrol strategies against major insect pests.
Assuntos
Densovirus/fisiologia , Controle Biológico de Vetores , Polissacarídeos/metabolismo , Spodoptera/virologia , Animais , Perfilação da Expressão Gênica , ProteômicaRESUMO
Lectins are carbohydrate-interacting proteins that play a pivotal role in multiple physiological and developmental aspects of all organisms. They can specifically interact with different bacterial and viral pathogens through carbohydrate-recognition domains (CRD). In addition, lectins are also of biotechnological interest because of their potential use as biosensors for capturing and identifying bacterial species. In this work, three C-type lectins from the Lepidoptera Spodoptera exigua were produced as recombinant proteins and their bacterial agglutination properties were characterized. The lowest protein concentration producing bacterial agglutination against a panel of different Gram+ and Gram- as well as their carbohydrate binding specificities was determined for the three lectins. One of these lectins, BLL2, was able to agglutinate cells from a broad range of bacterial species at an extremely low concentration, becoming a very interesting protein to be used as a biosensor or for other biotechnological applications involving bacterial capture.