Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(10): 4899-4914, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35848075

RESUMO

Co-culturing the bacterium Streptomyces rapamycinicus and the ascomycete Aspergillus nidulans has previously been shown to trigger the production of orsellinic acid (ORS) and its derivates in the fungal cells. Based on these studies it was assumed that direct physical contact is a prerequisite for the metabolic reaction that involves a fungal amino acid starvation response and activating chromatin modifications at the biosynthetic gene cluster (BGC). Here we show that not physical contact, but a guanidine containing macrolide, named polaramycin B, triggers the response. The substance is produced constitutively by the bacterium and above a certain concentration, provokes the production of ORS. In addition, several other secondary metabolites were induced by polaramycin B. Our genome-wide transcriptome analysis showed that polaramycin B treatment causes downregulation of fungal genes necessary for membrane stability, general metabolism and growth. A compensatory genetic response can be observed in the fungus that included upregulation of BGCs and genes necessary for ribosome biogenesis, translation and membrane stability. Our work discovered a novel chemical communication, in which the antifungal bacterial metabolite polaramycin B leads to the production of antibacterial defence chemicals and to the upregulation of genes necessary to compensate for the cellular damage caused by polaramycin B.


Assuntos
Aspergillus nidulans , Streptomyces , Aminoácidos/metabolismo , Antibacterianos/farmacologia , Antifúngicos/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cromatina/metabolismo , Eletrólitos , Guanidinas , Macrolídeos/metabolismo , Família Multigênica , Resorcinóis , Metabolismo Secundário/genética , Streptomyces/genética , Streptomyces/metabolismo
2.
Fungal Biol Biotechnol ; 10(1): 13, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355668

RESUMO

BACKGROUND: Fungi are important sources for bioactive compounds that find their applications in many important sectors like in the pharma-, food- or agricultural industries. In an environmental monitoring project for fungi involved in soil nitrogen cycling we also isolated Cephalotrichum gorgonifer (strain NG_p51). In the course of strain characterisation work we found that this strain is able to naturally produce high amounts of rasfonin, a polyketide inducing autophagy, apoptosis, necroptosis in human cell lines and showing anti-tumor activity in KRAS-dependent cancer cells. RESULTS: In order to elucidate the biosynthetic pathway of rasfonin, the strain was genome sequenced, annotated, submitted to transcriptome analysis and genetic transformation was established. Biosynthetic gene cluster (BGC) prediction revealed the existence of 22 BGCs of which the majority was not expressed under our experimental conditions. In silico prediction revealed two BGCs with a suite of enzymes possibly involved in rasfonin biosynthesis. Experimental verification by gene-knock out of the key enzyme genes showed that one of the predicted BGCs is indeed responsible for rasfonin biosynthesis. CONCLUSIONS: This study identified a biosynthetic gene cluster containing a key-gene responsible for rasfonin production. Additionally, molecular tools were established for the non-model fungus Cephalotrichum gorgonifer which allows strain engineering and heterologous expression of the BGC for high rasfonin producing strains and the biosynthesis of rasfonin derivates for diverse applications.

3.
J Fungi (Basel) ; 7(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356936

RESUMO

Two new species, Penicillium krskae (isolated from the air as a lab contaminant in Tulln (Austria, EU)) and Penicillium silybi (isolated as an endophyte from asymptomatic milk thistle (Silybum marianum) stems from Josephine County (Oregon, USA)) are described. The new taxa are well supported by phenotypic (especially conidial ornamentation under SEM, production of red exudate and red pigments), physiological (growth at 37 °C, response to cycloheximide and CREA), chemotaxonomic (production of specific extrolites), and multilocus phylogenetic analysis using RNA-polymerase II second largest subunit (RPB2), partial tubulin (benA), and calmodulin (CaM). Both new taxa are resolved within the section Exilicaulis in series Restricta and show phylogenetic affiliation to P. restrictum sensu stricto. They produce a large spectrum of toxic anthraquinoid pigments, namely, monomeric anthraquinones related to emodic and chloremodic acids and other interesting bioactive extrolites (i.e., endocrocin, paxilline, pestalotin, and 7-hydroxypestalotin). Of note, two bianthraquinones (i.e., skyrin and oxyskyrin) were detected in a culture extract of P. silybi. Two new chloroemodic acid derivatives (2-chloro-isorhodoptilometrin and 2-chloro-desmethyldermoquinone) isolated from the exudate of P. krskae ex-type culture were analyzed by nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA