Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36081006

RESUMO

Photoacoustic (PA) imaging systems are spreading in the biomedical community, and the development of new PA contrast agents is an active area of research. However, PA contrast agents are usually characterized with spectrophotometry or uncalibrated PA imaging systems, leading to partial assessment of their PA efficiency. To enable quantitative PA spectroscopy of contrast agents in vitro with conventional PA imaging systems, we have developed an adapted calibration method. Contrast agents in solution are injected in a dedicated non-scattering tube phantom imaged at different optical wavelengths. The calibration method uses a reference solution of cupric sulfate to simultaneously correct for the spectral energy distribution of excitation light at the tube location and perform a conversion of the tube amplitude in the image from arbitrary to spectroscopic units. The method does not require any precise alignment and provides quantitative PA spectra, even with non-uniform illumination and ultrasound sensitivity. It was implemented on a conventional imaging setup based on a tunable laser operating between 680 nm and 980 nm and a 5 MHz clinical ultrasound array. We demonstrated robust calibrated PA spectroscopy with sample volumes as low as 15 µL of known chromophores and commonly used contrast agents. The validated method will be an essential and accessible tool for the development of new and efficient PA contrast agents by improving their quantitative characterization.


Assuntos
Técnicas Fotoacústicas , Meios de Contraste/química , Imagens de Fantasmas , Técnicas Fotoacústicas/métodos , Análise Espectral/métodos , Ultrassonografia/métodos
2.
Phys Rev Lett ; 118(4): 043903, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28186813

RESUMO

Intensity maxima and zeros of speckle patterns obtained behind a diffuser are experimentally interchanged by applying a spiral phase delay of charge ±1 to the impinging coherent beam. This transform arises from the expectation that tightly focused beams, which have a planar wave front around the focus, are so changed into vortex beams and vice versa. The statistics of extrema locations and the intensity distribution of the so-generated "complementary" patterns are characterized by numerical simulations. It is demonstrated experimentally that the incoherent superposition of the three "complementary speckle patterns" yield a synthetic speckle grain size enlarged by a factor of sqrt[3]. A cyclic permutation of optical vortices and intensity maxima is unexpectedly observed and discussed.

3.
Phys Rev Lett ; 119(23): 235501, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286683

RESUMO

Metrological atomic force microscopy measurements are performed on the silica glass interfaces of photonic band-gap fibers and hollow capillaries. The freezing of attenuated out-of-equilibrium capillary waves during the drawing process is shown to result in a reduced surface roughness. The roughness attenuation with respect to the expected thermodynamical limit is determined to vary with the drawing stress following a power law. A striking anisotropic character of the height correlation is observed: glass surfaces thus retain a structural record of the direction of the flow to which the liquid was submitted.

4.
Opt Lett ; 41(21): 5086-5089, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805692

RESUMO

We present optical and atomic force microscopy measurements of the roughness of the core wall surface within a hollow core photonic bandgap fiber (HC-PBGF) over the [3×10-2 µm-1-30 µm-1] spatial frequency range. A recently developed immersion optical profilometry technique with picometer-scale sensitivity was used to measure the roughness of air-glass surfaces inside the fiber at unprecedentedly low spatial frequencies, which are known to have the highest impact on HC-PBGF scattering loss and, thus, determine their loss limit. Optical access to the inner surface of the core was obtained by the selective filling of the cladding holes with index matching liquid using techniques borrowed from micro-fluidics. Both measurement techniques reveal ultralow roughness levels exhibiting a 1/f spectral power density dependency characteristic of frozen surface capillary waves over a broad spatial frequency range. However, a deviation from this behavior at low spatial frequencies was observed for the first time, to the best of our knowledge.

5.
Opt Lett ; 39(13): 3911-4, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978769

RESUMO

We developed a reflection-mode optoacoustic mesoscopy system, based on raster-scanning of a custom designed spherically focused ultrasound detector, enabling seamless epi-illumination of the volume imaged. We study the performance of acoustic-resolution mesoscopy operating at an ultrawideband bandwidth of 20-180 MHz. i.e., a frequency band spreading over virtually an order of magnitude. Using tomographic reconstruction we showcase previously unreported, to our knowledge, axial resolutions of 4 µm and transverse resolutions of 18 µm reaching depths of up to 5 mm. We further investigate the frequency-dependence of features seen on the images to understand the implications of ultrawideband measurements. We show the overall imaging performance and the frequency ranges that contribute to observable resolution improvements from phantoms and animals.


Assuntos
Técnicas Fotoacústicas/métodos , Animais , Orelha Externa/irrigação sanguínea , Orelha Externa/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Camundongos , Microvasos/anatomia & histologia , Microvasos/diagnóstico por imagem , Morfogênese , Fenômenos Ópticos , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Tomografia Óptica/instrumentação , Tomografia Óptica/métodos , Ultrassom , Ultrassonografia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento
6.
Opt Lett ; 39(20): 6054-7, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25361154

RESUMO

We study the potential of photoacoustic guidance for light focusing through scattering samples via wavefront-shaping and iterative optimization. We experimentally demonstrate that the focusing efficiency on an extended absorber can be improved by iterative optimization of the high frequency components of the broadband photoacoustic signal detected with a spherically focused transducer. We demonstrate more than 12-fold increase in the photoacoustic signal generated by a 30 µm wire using a narrow frequency band around 60 MHz. By monitoring the speckle pattern evolution during the optimization process with a CCD camera, we experimentally confirm that such optimization leads to a smaller optical focus than what would be obtained by optimizing lower frequencies of the photoacoustic feedback.


Assuntos
Fenômenos Ópticos , Técnicas Fotoacústicas , Espalhamento de Radiação , Processamento de Sinais Assistido por Computador , Retroalimentação , Luz
7.
Opt Lett ; 39(9): 2664-7, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784072

RESUMO

We implement the photoacoustic transmission matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Lasers , Iluminação/instrumentação , Análise em Microsséries/instrumentação , Nefelometria e Turbidimetria/instrumentação , Técnicas Fotoacústicas/instrumentação , Folhas de Planta/citologia , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/instrumentação , Luz , Nefelometria e Turbidimetria/métodos , Espalhamento de Radiação
8.
Opt Lett ; 38(14): 2472-4, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23939084

RESUMO

We developed a raster-scan acoustic resolution broadband optoacoustic mesoscopy system and investigated the imaging performance using ultrasonic frequencies up to 125 MHz. The developed system achieves 7 µm axial resolution and transverse resolution of 30 µm reaching depths of at least 5 mm. This unprecedented performance is achieved by operating at out-of-focus ultrasonic detection and tomographic reconstruction. We demonstrate the limits reached due to the width of the laser pulse employed and showcase the technique on drosophila fly and drosophila pupae ex vivo.


Assuntos
Técnicas Fotoacústicas/métodos , Tomografia/métodos , Animais , Drosophila melanogaster , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
9.
Opt Lett ; 38(22): 4671-4, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322102

RESUMO

Broadband optoacoustic waves generated by biological tissues excited with nanosecond laser pulses carry information corresponding to a wide range of geometrical scales. Typically, the frequency content present in the signals generated during optoacoustic imaging is much larger compared to the frequency band captured by common ultrasonic detectors, the latter typically acting as bandpass filters. To image optical absorption within structures ranging from entire organs to microvasculature in three dimensions, we implemented optoacoustic tomography with two ultrasound linear arrays featuring a center frequency of 6 and 24 MHz, respectively. In the present work, we show that complementary information on anatomical features could be retrieved and provide a better understanding on the localization of structures in the general anatomy by analyzing multi-bandwidth datasets acquired on a freshly excised kidney.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Imageamento Tridimensional/instrumentação , Rim/diagnóstico por imagem , Lasers , Iluminação/instrumentação , Técnicas Fotoacústicas/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/instrumentação , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador/instrumentação
10.
Opt Lett ; 38(23): 5188-91, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24281542

RESUMO

In high-frequency photoacoustic imaging with uniform illumination, homogeneous photoabsorbing structures may be invisible because of their large size or limited-view issues. Here we show that, by exploiting dynamic speckle illumination, it is possible to reveal features that are normally invisible with a photoacoustic system comprised of a 20 MHz linear ultrasound array. We demonstrate imaging of a ∅5 mm absorbing cylinder and a 30 µm black thread arranged in a complex shape. The hidden structures are directly retrieved from photoacoustic images recorded for different random speckle illuminations of the phantoms by assessing the variation in the value of each pixel over the illumination patterns.


Assuntos
Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos , Absorção , Imagens de Fantasmas
11.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(12): 1671-1681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603493

RESUMO

Multispectral optoacoustic tomography (MSOT) uniquely enables spatial mapping in high resolution of oxygen saturation (SO2), with potential applications in studying pathological complications and therapy efficacy. MSOT offers seamless integration with ultrasonography, by using a common ultrasound (US) detector array. However, MSOT relies on multiple successive acquisitions of optoacoustic (OA) images at different optical wavelengths and the low frame rate of OA imaging makes the MSOT acquisition sensitive to body/respiratory motion. Moreover, the estimation of SO2 is highly sensitive to noise, and artifacts related to the respiratory motion of the animal were identified as the primary source of noise in MSOT. In this work, we propose a two-step image processing method for SO2 estimation in deep tissues. First, to mitigate motion artifacts, we propose a method of selection of OA images acquired only during the respiratory pause of the animal, using ultrafast ultrasound (US) images acquired immediately after each OA acquisition (US image acquisition duration of 1.4 ms and a total delay of 7 ms). We show that gating is more effective using US images than OA images at different optical wavelengths. Second, we propose a novel method that can estimate directly the SO2 value of a pixel and at the same time evaluate the amount of noise present in that pixel. Hence, the method can efficiently eliminate the pixels dominated by noise from the final SO2 map. Our postprocessing method is shown to outperform conventional methods for SO2 estimation, and the method was validated by in vivo oxygen challenge experiments.


Assuntos
Saturação de Oxigênio , Técnicas Fotoacústicas , Animais , Técnicas Fotoacústicas/métodos , Tomografia/métodos , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos
12.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(12): 1607-1620, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37079412

RESUMO

Volumetric, multimodal imaging with precise spatial and temporal coregistration can provide valuable and complementary information for diagnosis and monitoring. Considerable research has sought to combine 3-D photoacoustic (PA) and ultrasound (US) imaging in clinically translatable configurations; however, technical compromises currently result in poor image quality either for PA or ultrasonic modes. This work aims to provide translatable, high-quality, simultaneously coregistered dual-mode PA/US 3-D tomography. Volumetric imaging based on a synthetic aperture approach was implemented by interlacing PA and US acquisitions during a rotate-translate scan with a 5-MHz linear array (12 angles and 30-mm translation to image a 21-mm diameter, 19 mm long cylindrical volume within 21 s). For coregistration, an original calibration method using a specifically designed thread phantom was developed to estimate six geometrical parameters and one temporal offset through global optimization of the reconstructed sharpness and superposition of calibration phantom structures. Phantom design and cost function metrics were selected based on analysis of a numerical phantom and resulted in a high estimation accuracy for the seven parameters. Experimental estimations validated the calibration repeatability. The estimated parameters were used for the bimodal reconstruction of additional phantoms with either identical or distinct spatial distributions of US and PA contrasts. The superposition distance of the two modes was within < 10% of the acoustic wavelength, and a wavelength-order uniform spatial resolution was obtained. This dual-mode PA/US tomography should contribute to more sensitive and robust detection and follow-up of biological changes or the monitoring of slower-kinetic phenomena in living systems such as the accumulation of nanoagents.

13.
Nanoscale ; 15(42): 17085-17096, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37847496

RESUMO

Biomedical photothermal therapy with optical nanoparticles is based on the conversion of optical energy into heat through three steps: optical absorption, thermal conversion of the absorbed energy and heat transfer to the surrounding medium. The light-to-heat conversion efficiency (LHCE) has become one of the main metrics to quantitatively characterize the last two steps and evaluate the merit of nanoparticules for photothermal therapy. The estimation of the LHCE is mostly performed by monitoring the temperature evolution of a solution under laser irradiation. However, this estimation strongly depends on the experimental set-up and the heat balance model used. We demonstrate here, theoretically and experimentally, that the LHCE at multiple wavelengths can be efficiently and directly determined, without the use of models, by calibrated photoacoustic spectroscopy. The method was validated using already characterized colloidal suspensions of silver sulfide nanoparticles and maghemite nanoflowers and an uncertainty of 3 to 7% was estimated for the LHCE determination. Photoacoustic spectroscopy provides a new, precise and robust method of analysis of the photothermal capabilities of aqueous solutions of nanoagents.

14.
Opt Lett ; 37(19): 4080-2, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23027285

RESUMO

Optoacoustic (photoacoustic) mesoscopic and microscopic imaging is often implemented by linearly scanning a spherically focused ultrasound transducer. In this case, the resolution and sensitivity along the scan direction are limited by diffraction and therefore degrade rapidly for imaging depths away from the focal point. Partial restoration of the lost resolution can be achieved by using data-processing techniques, such as the virtual detector delay-and-sum method. However, these techniques are based on an approximate description of the detector properties, which limits the improvement in image quality they achieve. Herein we propose a reconstruction method based on an exact model of the optoacoustic generation and propagation that incorporates the spatial response of the sensor. The proposed method shows superior imaging performance over previously considered techniques.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Imagem Molecular/métodos , Técnicas Fotoacústicas/métodos , Algoritmos , Animais , Camundongos
15.
ACS Appl Mater Interfaces ; 14(36): 40501-40512, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044427

RESUMO

We have designed a new Bodipy scaffold for efficient in vivo photoacoustic (PA) imaging of nanoparticles commonly used as drug nanovectors. The new dye has an optimized absorption band in the near-infrared window in biological tissue and a low fluorescence quantum yield that leads to a good photoacoustic generation efficiency. After Bodipy-initiated ring-opening polymerization of lactide, the polylactide-Bodipy was formulated into PEGylated nanoparticles (NPs) by mixing with PLA-PEG at different concentrations. Formulated NPs around 100 nm exhibit excellent PA properties: an absorption band at 760 nm and a molar absorption coefficient in between that of molecular PA absorbers and gold NPs. Highly improved photostability compared to cyanine-labeled PLA NPs as well as innocuity in cultured macrophages were demonstrated. After intravenous injection in healthy animals, NPs were easily detected using a commercial PA imaging system and spectral unmixing, opening the way to their use as theranostic agents.


Assuntos
Nanopartículas , Técnicas Fotoacústicas , Animais , Compostos de Boro , Meios de Contraste , Técnicas Fotoacústicas/métodos , Poliésteres , Polímeros
16.
ACS Appl Mater Interfaces ; 14(49): 54439-54457, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468426

RESUMO

Smart microgels (µGels) made of polymeric particles doped with inorganic nanoparticles have emerged recently as promising multifunctional materials for nanomedicine applications. However, the synthesis of these hybrid materials is still a challenging task with the necessity to control several features, such as particle sizes and doping levels, in order to tailor their final properties in relation to the targeted application. We report herein an innovative modular strategy to achieve the rational design of well-defined and densely filled hybrid particles. It is based on the assembly of the different building blocks, i.e., µGels, dyes, and small gold nanoparticles (<4 nm), and the tuning of nanoparticle loading within the polymer matrix through successive incubation steps. The characterization of the final hybrid networks using UV-vis absorption, fluorescence, transmission electron microscopy, dynamic light scattering, and small-angle X-ray scattering revealed that they uniquely combine the properties of hydrogel particles, including high loading capacity and stimuli-responsive behavior, the photoluminescent properties of dyes (rhodamine 6G, methylene blue and cyanine 7.5), and the features of gold nanoparticle assembly. Interestingly, in response to pH and temperature stimuli, the smart hybrid µGels can shrink, leading to the aggregation of the gold nanoparticles trapped inside the polymer matrix. This stimuli-responsive behavior results in plasmon band broadening and red shift toward the near-infrared region (NIR), opening promising prospects in biomedical science. Particularly, the potential of these smart hybrid nanoplatforms for photoactivated hyperthermia, photoacoustic imaging, cellular internalization, intracellular imaging, and photothermal therapy was assessed, demonstrating well controlled multimodal opportunities for theranostics.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Microgéis , Nanopartículas , Técnicas Fotoacústicas , Ouro/química , Corantes Fluorescentes/química , Terapia Fototérmica , Técnicas Fotoacústicas/métodos , Nanopartículas Metálicas/química , Hipertermia Induzida/métodos , Nanopartículas/química , Polímeros/química , Microscopia Eletrônica de Transmissão , Concentração de Íons de Hidrogênio , Fototerapia , Linhagem Celular Tumoral
17.
Med Eng Phys ; 50: 96-102, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29054338

RESUMO

We present a novel non-contact system for monitoring the heart rate on human subjects with clothes. Our approach is based on vibrocardiography, and measures locally skin displacements. Vibrocardiography with a laser Doppler vibrometer already allows monitoring of this vital sign, but can only be used on bare skin and requires an expensive piece of equipment. We propose here to use an airborne pulse-Doppler ultrasound system operating in the 20-60 kHz range, and comprised of an emitter focusing the ultrasound pulses on skin and a microphone recording the reflected waves. Our implementation was validated in vitro and on two healthy human subjects, using simultaneously laser vibrocardiography and electrocardiography as references. Accurate measurements of the heart rate on clothed skin suggest that our non-contact ultrasonic method could be implemented both inside and outside the clinical environment, and therefore benefit both medical and safety applications.


Assuntos
Vestuário , Frequência Cardíaca , Cinetocardiografia/métodos , Ondas Ultrassônicas , Adulto , Artérias Carótidas/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Processamento de Sinais Assistido por Computador
18.
Light Sci Appl ; 6(1): e16186, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30167190

RESUMO

Whole-body optical imaging of post-embryonic stage model organisms is a challenging and long sought-after goal. It requires a combination of high-resolution performance and high-penetration depth. Optoacoustic (photoacoustic) mesoscopy holds great promise, as it penetrates deeper than optical and optoacoustic microscopy while providing high-spatial resolution. However, optoacoustic mesoscopic techniques only offer partial visibility of oriented structures, such as blood vessels, due to a limited angular detection aperture or the use of ultrasound frequencies that yield insufficient resolution. We introduce 360° multi orientation (multi-projection) raster scan optoacoustic mesoscopy (MORSOM) based on detecting an ultra-wide frequency bandwidth (up to 160 MHz) and weighted deconvolution to synthetically enlarge the angular aperture. We report unprecedented isotropic in-plane resolution at the 9-17 µm range and improved signal to noise ratio in phantoms and opaque 21-day-old Zebrafish. We find that MORSOM performance defines a new operational specification for optoacoustic mesoscopy of adult organisms, with possible applications in the developmental biology of adulthood and aging.

19.
Neoplasia ; 18(8): 459-67, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27566102

RESUMO

Diversity of the design and alignment of illumination and ultrasonic transducers empower the fine scalability and versatility of optoacoustic imaging. In this study, we implement an innovative high-resolution optoacoustic mesoscopy for imaging the vasculature and tissue oxygenation within subcutaneous and orthotopic cancerous implants of mice in vivo through acquisition of tomographic projections over 180° at a central frequency of 24 MHz. High-resolution volumetric imaging was combined with multispectral functional measurements to resolve the exquisite inner structure and vascularization of the entire tumor mass using endogenous and exogenous optoacoustic contrast. Evidence is presented for constitutive hypoxemia within the carcinogenic tissue through analysis of the hemoglobin absorption spectra and distribution. Morphometric readouts obtained with optoacoustic mesoscopy have been verified with high-resolution ultramicroscopic studies. The findings described herein greatly extend the applications of optoacoustic mesoscopy toward structural and multispectral functional measurements of the vascularization and hemodynamics within solid tumors in vivo and are of major relevance to basic and preclinical oncological studies in small animal models.


Assuntos
Hipóxia/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/metabolismo , Técnicas Fotoacústicas , Tomografia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Estadiamento de Neoplasias , Imagens de Fantasmas , Reprodutibilidade dos Testes , Tomografia/métodos
20.
Photoacoustics ; 3(1): 20-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25893167

RESUMO

In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA