Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 109(3): 365-70, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24863972

RESUMO

The sterile insect technique (SIT) is a promising pest control method in terms of efficacy and environmental compatibility. In this study, we determined the efficacy of thiotepa-sterilised males in reducing the target Aedes aegypti populations. Treated male pupae were released weekly into large laboratory cages at a constant ratio of either 5:1 or 2:1 sterile-to-fertile males. A two-to-one release ratio reduced the hatch rate of eggs laid in the cage by approximately a third and reduced the adult catch rate by approximately a quarter, but a 5:1 release drove the population to elimination after 15 weeks of release. These results indicate that thiotepa exposure is an effective means of sterilising Ae. aegypti and males thus treated are able to reduce the reproductive capacity of a stable population under laboratory conditions. Further testing of the method in semi-field enclosures is required to evaluate the mating competitiveness of sterile males when exposed to natural environmental conditions. If proven effective, SIT using thiotepa-sterilised males may be incorporated into an integrated programme of vector control to combat dengue in Cuba.


Assuntos
Aedes/efeitos dos fármacos , Controle de Mosquitos/métodos , Tiotepa/farmacologia , Animais , Dengue/prevenção & controle , Feminino , Masculino
2.
Rev Biol Trop ; 59(3): 1007-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22017108

RESUMO

Chemical insecticides may be toxic and cause environmental degradation. Consequently, biological control for insects represents an alternative with low ecological impact. In this work, three soil isolates (A21, A51 and C17) from different regions of the Cuban archipelago were identified, characterized and evaluated against Aedes aegypti and Culex quinquefasciatus. The new isolates were compared with reference IPS82 strain and two strains isolated from biolarvicides Bactivec and Bactoculicida, respectively. The differentiation was done by morphological, biochemical, bioassays activity and molecular methods (SDS-PAGE, plasmid profile and random amplified polymorphic analysis). All isolates were identified as Bacillus thuringiensis. The A21, A51 and C17 isolates showed higher larvicide activity than Bactivec's isolated reference strain, against both A. aegypti and C. quinquefasciatus. A21 isolate had a protein profile similar to IPS82 and Bactivec strain. A51 and C17 isolates produced a characteristic proteins pattern. A21 and A51 isolates had plasmid patterns similar to IPS82 standard strain, while C17 isolate had different both plasmid profile and protein bands. All the studied isolates showed a diverse RAPD patterns and were different from the strains previously used in biological control in Cuba.


Assuntos
Aedes , Bacillus thuringiensis/patogenicidade , Culex , Controle Biológico de Vetores/métodos , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/isolamento & purificação , Bioensaio , Larva/microbiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Microbiologia do Solo
3.
Insects ; 12(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070177

RESUMO

Dengue virus infections are a serious public health problem worldwide. Aedes aegypti is the primary vector of dengue in Cuba. As there is no vaccine or specific treatment, the control efforts are directed to the reduction of mosquito populations. The indiscriminate use of insecticides can lead to adverse effects on ecosystems, including human health. The sterile insect technique is a species-specific and environment-friendly method of insect population control based on the release of large numbers of sterile insects, ideally males only. The success of this technique for the sustainable management of agricultural pests has encouraged its evaluation for the population suppression of mosquito vector species. Here, we describe an open field trial to evaluate the effect of the release of irradiated male Ae. aegypti on a wild population. The pilot trial was carried out in a suburb of Havana and compared the mosquito population density before and after the intervention, in both untreated control and release areas. The wild population was monitored by an ovitrap network, recording frequency and density of eggs as well as their hatch rate. A significant amount of sterility was induced in the field population of the release area, as compared with the untreated control area. The ovitrap index and the mean number of eggs/trap declined dramatically after 12 and 5 weeks of releases, respectively. For the last 3 weeks, no eggs were collected in the treatment area, clearly indicating a significant suppression of the wild target population. We conclude that the sterile males released competed successfully and induced enough sterility to suppress the local Ae. aegypti population.

4.
J Arthropod Borne Dis ; 13(1): 39-49, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31346534

RESUMO

BACKGROUND: The efficacy of biolarvicides may be influenced by species of mosquito, larval age and density, temperature, water quality, bacterial formulation, and others. The aim of this study was to evaluate the influence of temperature and chlorine on larvicidal activity of Bacillus thuringiensis Cuban isolates against Aedes aegypti. METHODS: The influence of temperature (25, 30, 35 °C) and chlorine (2.25mg/L) on the larvicidal activity of eleven B. thuringiensis Cuban isolates (collected between 2007 and 2009) were tested under laboratory conditions following WHO protocols. Bioassay data were analyzed by Probit program. The effect of chlorine and temperature (25, 30, 35 and 40 °C) on the Cry and Cyt proteins of these isolates was determined by SDS-PAGE polyacrylamide gel electrophoresis. RESULTS: The pathogenicity of the isolates U81, X48 was affected at 35 °C. However, A21, A51, L910, and R89 isolates increase their entomopathogen activity at 35 °C. No differences were observed in toxicity of M29, R84, R85 and R87 isolates at different temperatures. The Cry 4, Cry 10 and Cry 11 proteins were reduced in A21, X48, R85 isolates at 35 and 40 °C. The Cyt proteins were reduced at 35 and 40 °C in A21, X48, R85, and A51 isolates. In L910 and R84 isolates, the Cyt toxin was degraded only at 40 °C. In chlorinated water, the lethal concentrations 50 and 90 in A21, A51, M29, R84, U81, and X48 isolates were increase. CONCLUSION: A21, A51, L910, R85, and X48 isolates have a strong larvicidal activity for the treatment of Ae. aegypti breeding's sites exposed to high temperature and chlorine.

5.
Acta Trop ; 132 Suppl: S164-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24513037

RESUMO

Successful SIT trials against mosquitoes in the 1960-70s were achieved by sterilizing male mosquitoes using chemosterilants. Their use was discontinued after concerns were raised about the effect of residues on non-target organisms, although scant evidence has been published. Irradiation is an expensive process; chemosterilization could be an affordable option for implementing SIT programs in developing countries. We compare life table parameters of three Aedes aegypti populations comprising different ratios of thiotepa-treated and non-treated males in order to identify the impact on reproductive potential of the presence of sterile males. No difference was observed in the survival of the treated and untreated males. The release of thiotepa sterilized males into caged Ae. aegypti populations had no effect on death or survival probability of the individuals in the cages but the fecundity of females was significantly reduced, as evaluated by hatch rate and stable age structure parameters. The significant decreases in net reproduction rate, finite rate of natural increase and intrinsic rate of natural increase in populations including sterile males are sufficient to indicate that such populations would not be able to proliferate in natural conditions. This suggests that release of Ae. aegypti thiotepa-treated males could be effective in reducing the reproductive capability of the target population and consequently contribute to vector control.


Assuntos
Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Esterilizantes Químicos/metabolismo , Esterilização Reprodutiva/métodos , Tiotepa/metabolismo , Animais , Feminino , Fertilidade , Tábuas de Vida , Masculino , Controle Biológico de Vetores/métodos , Reprodução
6.
Acta Trop ; 132 Suppl: S2-11, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24252487

RESUMO

The enormous burden placed on populations worldwide by mosquito-borne diseases, most notably malaria and dengue, is currently being tackled by the use of insecticides sprayed in residences or applied to bednets, and in the case of dengue vectors through reduction of larval breeding sites or larviciding with insecticides thereof. However, these methods are under threat from, amongst other issues, the development of insecticide resistance and the practical difficulty of maintaining long-term community-wide efforts. The sterile insect technique (SIT), whose success hinges on having a good understanding of the biology and behaviour of the male mosquito, is an additional weapon in the limited arsenal against mosquito vectors. The successful production and release of sterile males, which is the mechanism of population suppression by SIT, relies on the release of mass-reared sterile males able to confer sterility in the target population by mating with wild females. A five year Joint FAO/IAEA Coordinated Research Project brought together researchers from around the world to investigate the pre-mating conditions of male mosquitoes (physiology and behaviour, resource acquisition and allocation, and dispersal), the mosquito mating systems and the contribution of molecular or chemical approaches to the understanding of male mosquito mating behaviour. A summary of the existing knowledge and the main novel findings of this group is reviewed here, and further presented in the reviews and research articles that form this Acta Tropica special issue.


Assuntos
Fenômenos Biológicos , Culicidae/genética , Culicidae/fisiologia , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Animais , Masculino
7.
J Vector Ecol ; 38(1): 46-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23701606

RESUMO

The use of insect pathogens is a viable alternative for insect control because of their relative specificity and lower environmental impact. The search for wild strains against dipterans could have an impact on mosquito control programs. We have made an extensive screening of soil in western Cuba to find bacteria with larvicidal activity against mosquitoes. A total of 150 soil samples were collected and isolates were identifying using the API 50 CHB gallery. Phenotypic characteristics were analyzed by hierarchical ascending classification. Quantitative bioassays were conducted under laboratory conditions following the World Health Organization protocol in order to ascertain the toxicity and efficacy of isolates. The protein profiles of the crystal components were determined by SDS-PAGE. Eight hundred and eighty-one bacterial isolates were obtained, and 13 isolates with entomopathogenic activity were isolated from nine samples. Nine isolates displayed higher entomopathogenic activity against both Cx. quinquefasciatus and Ae. aegypti compared with the reference strain 266/2. All toxic isolates showed higher biological potency than the 266/2 strain. These isolates with high entomopathogenic activity displayed a protein pattern similar to the B. thuringiensis var. israelensis IPS-82 and 266/2 strains. These results are a valuable tool for the control of Diptera of medical importance.


Assuntos
Bacillus thuringiensis/patogenicidade , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Microbiologia do Solo , Aedes/microbiologia , Animais , Cuba , Culex/microbiologia , Eletroforese em Gel de Poliacrilamida
8.
Mem. Inst. Oswaldo Cruz ; 109(3): 365-370, 06/2014. graf
Artigo em Inglês | LILACS | ID: lil-711729

RESUMO

The sterile insect technique (SIT) is a promising pest control method in terms of efficacy and environmental compatibility. In this study, we determined the efficacy of thiotepa-sterilised males in reducing the target Aedes aegypti populations. Treated male pupae were released weekly into large laboratory cages at a constant ratio of either 5:1 or 2:1 sterile-to-fertile males. A two-to-one release ratio reduced the hatch rate of eggs laid in the cage by approximately a third and reduced the adult catch rate by approximately a quarter, but a 5:1 release drove the population to elimination after 15 weeks of release. These results indicate that thiotepa exposure is an effective means of sterilising Ae. aegypti and males thus treated are able to reduce the reproductive capacity of a stable population under laboratory conditions. Further testing of the method in semi-field enclosures is required to evaluate the mating competitiveness of sterile males when exposed to natural environmental conditions. If proven effective, SIT using thiotepa-sterilised males may be incorporated into an integrated programme of vector control to combat dengue in Cuba.


Assuntos
Animais , Feminino , Masculino , Aedes/efeitos dos fármacos , Controle de Mosquitos/métodos , Tiotepa/farmacologia , Dengue/prevenção & controle
9.
Rev. biol. trop ; 59(3): 1007-1016, Sept. 2011. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-638136

RESUMO

Chemical insecticides may be toxic and cause environmental degradation. Consequently, biological control for insects represents an alternative with low ecological impact. In this work, three soil isolates (A21, A51 and C17) from different regions of the Cuban archipelago were identified, characterized and evaluated against Aedes aegypti and Culex quinquefasciatus. The new isolates were compared with reference IPS82 strain and two strains isolated from biolarvicides Bactivec and Bactoculicida, respectively. The differentiation was done by morphological, biochemical, bioassays activity and molecular methods (SDS-PAGE, plasmid profile and random amplified polymorphic analysis). All isolates were identified as Bacillus thuringiensis. The A21, A51 and C17 isolates showed higher larvicide activity than Bactivec’s isolated reference strain, against both A. aegypti and C. quinquefasciatus. A21 isolate had a protein profile similar to IPS82 and Bactivec strain. A51 and C17 isolates produced a characteristic proteins pattern. A21 and A51 isolates had plasmid patterns similar to IPS82 standard strain, while C17 isolate had different both plasmid profile and protein bands. All the studied isolates showed a diverse RAPD patterns and were different from the strains previously used in biological control in Cuba. Rev. Biol. Trop. 59 (3): 1007-1016. Epub 2011 September 01.


El uso prolongado de insecticidas ha conducido al desarrollo de resistencia en diferentes especies de mosquitos y al incremento de la degradación del ambiente. El control biológico de insectos ha devenido como una alternativa útil y de bajo impacto ambiental. En nuestro estudio fueron identificados, caracterizados tres aislamientos de suelos procedentes de diferentes regiones del archipiélago cubano y comparados con cepas de referencia: aisladas de los biolarvicidas Bactivec y Bactoculicida, además de IPS82. La diferenciación de los mismos se llevó a cabo mediante métodos morfológicos, bioquímicos y moleculares (SDSPAGE, perfil plasmídico, RAPD). Los aislamientos fueron identificados como Bacillus thuringiensis; A21, A51 y C17 mostraron una mayor actividad contra larvas de Aedes aegypti and Culex quinquefasciatus que la cepa aislada del biolarvicida Bactivec, utilizada como referencia en este estudio. Dos de los aislamientos poseían perfiles proteicos y plasmídicos similares al de la cepa control IPS82, pero el restante difería de ellos. Los tres mostraron patrones de RAPD diferentes lo que nos permitió su diferenciación. Estos patrones de RAPD también diferían del observado para las cepas utilizadas comúnmente en el control biológico en nuestro país.


Assuntos
Animais , Aedes , Bacillus thuringiensis/patogenicidade , Culex , Controle Biológico de Vetores/métodos , Bioensaio , Bacillus thuringiensis/genética , Bacillus thuringiensis/isolamento & purificação , Larva/microbiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA