Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 128(19): 3525-31, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26377767

RESUMO

Collagen VI represents a remarkable extracellular matrix molecule, and in the past few years, studies of this molecule have revealed its involvement in a wide range of tissues and pathological conditions. In addition to its complex multi-step pathway of biosynthesis and assembly that leads to the formation of a characteristic and distinctive network of beaded microfilaments in the extracellular matrix, collagen VI exerts several key roles in different tissues. These range from unique biomechanical roles to cytoprotective functions in different cells, including myofibers, chondrocytes, neurons, fibroblasts and cardiomyocytes. Indeed, collagen VI has been shown to exert a surprisingly broad range of cytoprotective effects, which include counteracting apoptosis and oxidative damage, favoring tumor growth and progression, regulating autophagy and cell differentiation, and even contributing to the maintenance of stemness. In this Cell Science at a Glance article and the accompanying poster, we present the current knowledge of collagen VI, and in particular, discuss its relevance in stemness and in preserving the mechanical properties of tissues, as well as its links with human disorders.


Assuntos
Colágeno Tipo VI/metabolismo , Matriz Extracelular/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos
2.
Biochim Biophys Acta ; 1840(8): 2506-19, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24418517

RESUMO

BACKGROUND: Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche. SCOPE OF REVIEW: We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM-stem cell interactions. MAJOR CONCLUSIONS: ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior. GENERAL SIGNIFICANCE: ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.


Assuntos
Microambiente Celular , Matriz Extracelular/metabolismo , Nicho de Células-Tronco , Animais , Fenômenos Biofísicos , Linhagem da Célula , Humanos , Mecanotransdução Celular
3.
Stem Cell Res Ther ; 15(1): 179, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902774

RESUMO

BACKGROUND: Adult skeletal muscle contains resident muscle stem cells (MuSC) with high myogenic and engraftment potentials, making them suitable for cell therapy and regenerative medicine approaches. However, purification process of MuSC remains a major hurdle to their use in the clinic. Indeed, muscle tissue enzymatic dissociation triggers a massive activation of stress signaling pathways, among which P38 and JNK MAPK, associated with a premature loss of MuSC quiescence. While the role of these pathways in the myogenic progression of MuSC is well established, the extent to which their dissociation-induced activation affects the functionality of these cells remains unexplored. METHODS: We assessed the effect of P38 and JNK MAPK induction on stemness marker expression and MuSC activation state during isolation by pharmacological approaches. MuSC functionality was evaluated by in vitro assays and in vivo transplantation experiments. We performed a comparative analysis of the transcriptome of human MuSC purified with pharmacological inhibitors of P38 and JNK MAPK (SB202190 and SP600125, respectively) versus available RNAseq resources. RESULTS: We monitored PAX7 protein levels in murine MuSC during muscle dissociation and demonstrated a two-step decline partly dependent on P38 and JNK MAPK activities. We showed that simultaneous inhibition of these pathways throughout the MuSC isolation process preserves the expression of stemness markers and limits their premature activation, leading to improved survival and amplification in vitro as well as increased engraftment in vivo. Through a comparative RNAseq analysis of freshly isolated human MuSC, we provide evidence that our findings in murine MuSC could be relevant to human MuSC. Based on these findings, we implemented a purification strategy, significantly improving the recovery yields of human MuSC. CONCLUSION: Our study highlights the pharmacological limitation of P38 and JNK MAPK activities as a suitable strategy to qualitatively and quantitatively ameliorate human MuSC purification process, which could be of great interest for cell-based therapies.


Assuntos
Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Humanos , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Antracenos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
4.
Cells ; 10(4)2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800595

RESUMO

Background: Skeletal muscle is one of the only mammalian tissues capable of rapid and efficient regeneration after trauma or in pathological conditions. Skeletal muscle regeneration is driven by the muscle satellite cells, the stem cell population in interaction with their niche. Upon injury, muscle fibers undergo necrosis and muscle stem cells activate, proliferate and fuse to form new myofibers. In addition to myogenic cell populations, interaction with other cell types such as inflammatory cells, mesenchymal (fibroadipogenic progenitors-FAPs, pericytes) and vascular (endothelial) lineages are important for efficient muscle repair. While the role of the distinct populations involved in skeletal muscle regeneration is well characterized, the quantitative changes in the muscle stem cell and niche during the regeneration process remain poorly characterized. Methods: We have used mass cytometry to follow the main muscle cell types (muscle stem cells, vascular, mesenchymal and immune cell lineages) during early activation and over the course of muscle regeneration at D0, D2, D5 and D7 compared with uninjured muscles. Results: Early activation induces a number of rapid changes in the proteome of multiple cell types. Following the induction of damage, we observe a drastic loss of myogenic, vascular and mesenchymal cell lineages while immune cells invade the damaged tissue to clear debris and promote muscle repair. Immune cells constitute up to 80% of the mononuclear cells 5 days post-injury. We show that muscle stem cells are quickly activated in order to form new myofibers and reconstitute the quiescent muscle stem cell pool. In addition, our study provides a quantitative analysis of the various myogenic populations during muscle repair. Conclusions: We have developed a mass cytometry panel to investigate the dynamic nature of muscle regeneration at a single-cell level. Using our panel, we have identified early changes in the proteome of stressed satellite and niche cells. We have also quantified changes in the major cell types of skeletal muscle during regeneration and analyzed myogenic transcription factor expression in satellite cells throughout this process. Our results highlight the progressive dynamic shifts in cell populations and the distinct states of muscle stem cells adopted during skeletal muscle regeneration. Our findings give a deeper understanding of the cellular and molecular aspects of muscle regeneration.


Assuntos
Músculo Esquelético/patologia , Proteômica , Análise de Célula Única , Cicatrização , Animais , Linhagem da Célula , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/fisiopatologia , Proteoma/metabolismo , Regeneração , Células-Tronco/citologia
5.
Stem Cell Reports ; 15(3): 597-611, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32763161

RESUMO

Muscle stem cells (or muscle satellite cells [MuSCs]) are required for postnatal growth. Yet, the detailed characterization of myogenic progression and establishment of quiescence during this process remains poorly documented. Here, we provide an overview of myogenic cells heterogeneity and dynamic from birth to adulthood using flow cytometry. We demonstrated that PAX7+ cells acquire an increasing ability to progress in the myogenic program from birth to adulthood. We then simultaneously analyzed the cycling state (KI67 expression) of the MuSCs and progenitors (PAX7+) and their progression into myogenic precursors (PAX7-MYOD+) and differentiating cells (MYOG+) in vivo. We identified two distinct peaks of myogenic differentiation between P7-P10 and P21-P28, and showed that the quiescent MuSC pool is established between 7 and 8 weeks of age. Overall our study provides a comprehensive in vivo characterization of myogenic heterogeneity and demonstrates the highly dynamic nature of skeletal muscle postnatal growth process.


Assuntos
Ciclo Celular , Desenvolvimento Muscular , Músculo Esquelético/citologia , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Diferenciação Celular , Células Cultivadas , Cadeias alfa de Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo
6.
J Biomed Mater Res B Appl Biomater ; 106(8): 2763-2777, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29412500

RESUMO

Skeletal muscle engineering aims at tissue reconstruction to replace muscle loss following traumatic injury or in congenital muscle defects. Skeletal muscle can be engineered by using biodegradable and biocompatible scaffolds that favor myogenic cell adhesion and subsequent tissue organization. In this study, we characterized scaffolds made of gelatin cross-linked with genipin, a natural derived cross-linking agent with low cytotoxicity and high biocompatibility, for tissue engineering of skeletal muscle. We generated gelatin-genipin hydrogels with a stiffness of 13 kPa to reproduce the mechanical properties characteristic of skeletal muscle and we show that their surface can be topographically patterned through soft lithography to drive myogenic cells differentiation and unidirectional orientation. Furthermore, we demonstrate that these biomaterials can be successfully implanted in vivo under dorsal mouse skin, showing good biocompatibility and slow biodegradation rate. Moreover, the grafting of this biomaterial in partially ablated tibialis anterior muscle does not impair muscle regeneration, supporting future applications of gelatin-genipin biomaterials in the field of skeletal muscle tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2763-2777, 2018.


Assuntos
Gelatina , Hidrogéis , Iridoides , Músculo Esquelético/metabolismo , Engenharia Tecidual , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Gelatina/química , Gelatina/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Iridoides/química , Iridoides/farmacologia , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/citologia
7.
J Biomed Mater Res B Appl Biomater ; 103(5): 1107-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25277071

RESUMO

In this article, conductive hollow fibers have been fabricated using melt spinning technique. Multiwalled carbon nanotubes (MWNTs) and poly(3-hexylthiophene-2,5-diyl) (P3HT) have been used to fabricate conductive poly-caprolactone (PCL) composites. The hollow fibers have inner and outer diameter in the range of 300 µm and 500 µm, respectively. Critical parameters to tune the dimension of hollow fibers have been defined following two-dimensions mathematical model. Evaluation of the mechanical properties showed that the incorporation of 1-3 wt % MWNTs and 5-8 wt % P3HT increased Young Modulus of 10% and 20% respectively, compared with pure PCL. The electrical property assessment demonstrated that a minimum incorporation of 3 wt % MWNT and 8 wt % P3HT in PCL matrix transformed composite materials into conductive materials. In addition, SH-SY5Y human neuroblastoma cells were seeded on the fabricated samples an their adhesion, proliferation and neurite length growth were analysed. In particular we observed that these materials promoted cell activities and in particular on MWNT/PCL composites there was a significant increase of neurite growth.


Assuntos
Nanotubos de Carbono/química , Tecido Nervoso , Polímeros/química , Tiofenos/química , Engenharia Tecidual/métodos , Linhagem Celular Tumoral , Humanos
8.
Front Aging Neurosci ; 6: 244, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309428

RESUMO

Mutations of genes encoding for collagen VI cause various muscle diseases in humans, including Bethlem myopathy and Ullrich congenital muscular dystrophy. Collagen VI null (Col6a1 (-/-)) mice are affected by a myopathic phenotype with mitochondrial dysfunction, spontaneous apoptosis of muscle fibers, and defective autophagy. Moreover, Col6a1 (-/-) mice display impaired muscle regeneration and defective self-renewal of satellite cells after injury. Treatment with cyclosporin A (CsA) is effective in normalizing the mitochondrial, apoptotic, and autophagic defects of myofibers in Col6a1 (-/-) mice. A pilot clinical trial with CsA in Ullrich patients suggested that CsA may increase the number of regenerating myofibers. Here, we report the effects of CsA administration at 5 mg/kg body weight every 12 h in Col6a1 (-/-) mice on muscle regeneration under physiological conditions and after cardiotoxin (CdTx)-induced muscle injury. Our findings indicate that CsA influences satellite cell activity and triggers the formation of regenerating fibers in Col6a1 (-/-) mice. Data obtained on injured muscles show that under appropriate administration, regimens CsA is able to stimulate myogenesis in Col6a1 (-/-) mice by significantly increasing the number of myogenin (MyoG)-positive cells and of regenerating myofibers at the early stages of muscle regeneration. CsA is also able to ameliorate muscle regeneration of Col6a1 (-/-) mice subjected to multiple CdTx injuries, with a concurrent maintenance of the satellite cell pool. Our data show that CsA is beneficial for muscle regeneration in Col6a1 (-/-) mice.

9.
Nat Commun ; 4: 1964, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23743995

RESUMO

Adult muscle stem cells, or satellite cells have essential roles in homeostasis and regeneration of skeletal muscles. Satellite cells are located within a niche that includes myofibers and extracellular matrix. The function of specific extracellular matrix molecules in regulating SCs is poorly understood. Here, we show that the extracellular matrix protein collagen VI is a key component of the satellite cell niche. Lack of collagen VI in Col6a1(-/-) mice causes impaired muscle regeneration and reduced satellite cell self-renewal capability after injury. Collagen VI null muscles display significant decrease of stiffness, which is able to compromise the in vitro and in vivo activity of wild-type satellite cells. When collagen VI is reinstated in vivo by grafting wild-type fibroblasts, the biomechanical properties of Col6a1(-/-) muscles are ameliorated and satellite cell defects rescued. Our findings establish a critical role for an extracellular matrix molecule in satellite cell self-renewal and open new venues for therapies of collagen VI-related muscle diseases.


Assuntos
Colágeno Tipo VI/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Animais , Proliferação de Células , Colágeno Tipo VI/deficiência , Módulo de Elasticidade , Espaço Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/transplante , Imunofluorescência , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Células Satélites de Músculo Esquelético/metabolismo , Nicho de Células-Tronco , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA