RESUMO
Yeast biofilms contribute to quality impairment of industrial processes and also play an important role in clinical infections. Little is known about biofilm formation and their treatment. The aim of this study was to establish a multi-layer yeast biofilm model using a modified 3.7 l bench-top bioreactor operated in continuous mode (D = 0.12 h(-1)). The repeatability of biofilm formation was tested by comparing five bioprocesses with Rhodotorula mucilaginosa, a strain isolated from washing machines. The amount of biofilm formed after 6 days post inoculation was 83 µg cm(-2) protein, 197 µg cm(-2) polysaccharide and 6.9 × 10(6) CFU cm(-2) on smooth polypropylene surfaces. Roughening the surface doubled the amount of biofilm but also increased its spatial variability. Plasma modification of polypropylene significantly reduced the hydrophobicity but did not enhance cell attachment. The biofilm formed on polypropylene coupons could be used for sanitation studies.
Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Rhodotorula/fisiologia , Adesão Celular , Interações Hidrofóbicas e Hidrofílicas , Reprodutibilidade dos Testes , Propriedades de SuperfícieRESUMO
The goal of this comparative study was to investigate biofilm forming microorganisms living in washing machines (WMs). Biofilms were sampled from 11 washing machines from four countries and three continents. Among the 94 isolated strains, 30% were potential human pathogens. Representative strains were selected and biofilm formation was evaluated with the crystal violet (CV) assay. The majority of the WM isolates formed more biofilm than their reference strains. Biofilms of P. putida WM (the largest biofilm producer) were exposed to different concentrations (0.0007-7 g l(-1)) of the standard detergent IEC-A* at 30°C for 30 min and observed with confocal laser scanning microscopy. Using quantitative CVA, P. putida WM biofilm removal required higher detergent concentrations than the type strain. However, for both strains the recommended detergent concentration (7 g l(-1)) was insufficient to completely clean surfaces from cell debris and exopolymeric substances.
Assuntos
Biofilmes/efeitos dos fármacos , Detergentes/farmacologia , Desinfecção/métodos , Utensílios Domésticos , Pseudomonas putida/efeitos dos fármacos , Incrustação Biológica , Fungos/fisiologia , Violeta Genciana , Pseudomonas putida/isolamento & purificação , Pseudomonas putida/fisiologiaRESUMO
Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy.