Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life (Basel) ; 13(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983754

RESUMO

Dysgraphia is a neurodevelopmental disorder specific to handwriting. Classical diagnosis is based on the evaluation of speed and quality of the final handwritten text: it is therefore delayed as it is conducted only when handwriting is mastered, in addition to being highly language-dependent and not always easily accessible. This work presents a solution able to anticipate dysgraphia screening when handwriting has not been learned yet, in order to prevent negative consequences on the individuals' academic and daily life. To quantitatively measure handwriting-related characteristics and monitor their evolution over time, we leveraged the Play-Draw-Write iPad application to collect data produced by children from the last year of kindergarten through the second year of elementary school. We developed a meta-model based on deep learning techniques (ensemble techniques and Quasi-SVM) which receives as input raw signals collected after a processing phase based on dimensionality reduction techniques (autoencoder and Time2Vec) and mathematical tools for high-level feature extraction (Procrustes Analysis). The final dysgraphia classifier can identify "at-risk" children with 84.62% Accuracy and 100% Precision more than two years earlier than current diagnostic techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA