Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nucleic Acids Res ; 45(22): 12715-12722, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29036442

RESUMO

H2A.Z histone variant is an important regulator of gene transcription, which is enriched at regulatory regions but is also found within gene bodies. Recent evidence suggests that active recruitment of H2A.Z within gene bodies is required to induce gene repression. In contrast to this view, we show that global inhibition of transcription results in H2A.Z accumulation at gene transcription start sites, as well as within gene bodies. Our results indicate that accumulation of H2A.Z within repressed genes can also be a consequence of the repression of gene transcription rather than an active mechanism required to establish the repression.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Histonas/genética , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Alfa-Amanitina/farmacologia , Flavonoides/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Histonas/metabolismo , Humanos , Modelos Genéticos , Nucleossomos/genética , Nucleossomos/metabolismo , Piperidinas/farmacologia
2.
Nucleic Acids Res ; 45(15): 8859-8872, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28666352

RESUMO

RPA-coated single-stranded DNA (RPA-ssDNA), a nucleoprotein structure induced by DNA damage, promotes ATR activation and homologous recombination (HR). RPA is hyper-phosphorylated and ubiquitylated after DNA damage. The ubiquitylation of RPA by PRP19 and RFWD3 facilitates ATR activation and HR, but how it is stimulated by DNA damage is still unclear. Here, we show that RFWD3 binds RPA constitutively, whereas PRP19 recognizes RPA after DNA damage. The recruitment of PRP19 by RPA depends on PIKK-mediated RPA phosphorylation and a positively charged pocket in PRP19. An RPA32 mutant lacking phosphorylation sites fails to recruit PRP19 and support RPA ubiquitylation. PRP19 mutants unable to bind RPA or lacking ubiquitin ligase activity also fail to support RPA ubiquitylation and HR. These results suggest that RPA phosphorylation enhances the recruitment of PRP19 to RPA-ssDNA and stimulates RPA ubiquitylation through a process requiring both PRP19 and RFWD3, thereby triggering a phosphorylation-ubiquitylation circuitry that promotes ATR activation and HR.


Assuntos
Enzimas Reparadoras do DNA/genética , Reparo do DNA , DNA de Cadeia Simples/genética , Recombinação Homóloga , Proteínas Nucleares/genética , Fatores de Processamento de RNA/genética , Proteína de Replicação A/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosforilação , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , Proteína de Replicação A/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
J Hered ; 108(3): 262-269, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28186244

RESUMO

Assessing the genetic variation and distribution of immune genes across heterogeneous environmental conditions in wild species is essential to further our understanding of the role of pathogen pressure and potential resistance or prevalence in hosts. Researchers have recently investigated ß-defensin genes in the wild, because their variability suggests that they may play an important role in innate host defense. This study investigated the variation occurring at 6 innate immune genes of the ß-defensin family in a declining population of tree swallows (Tachycineta bicolor) in southern Québec, Canada (N = 160). We found that all 6 genes showed synonymous and nonsynonymous single nucleotide polymorphisms (SNPs) within the exon coding for the mature peptide. These results indicated that this group of genes was diverse in tree swallows. Our results suggested a potential interaction of this group of genes with fluctuating pathogen diversity, however, we found no sign of positive or negative selection. We assessed whether or not the distribution of genetic diversity of ß-defensin genes in our study population differed between 2 regions that strongly differ in their level of agricultural intensification. Adults are highly philopatric to their breeding sites and their immunological responses differ between these 2 regions. However, we found little evidence that the level and distribution of genetic variability differed between these heterogeneous environmental conditions. Further studies should aim to assess the link between genetic diversity of ß-defensin genes and fitness-related traits in wild populations.


Assuntos
Variação Genética , Imunidade Inata , Andorinhas , beta-Defensinas , Animais , Animais Selvagens , Andorinhas/genética , Andorinhas/imunologia , beta-Defensinas/genética
4.
Genes Dev ; 23(13): 1522-33, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19515975

RESUMO

Incorporation of H2A.Z into the chromatin of inactive promoters has been shown to poise genes for their expression. Here we provide strong evidence that H2A.Z is incorporated into the promoter regions of estrogen receptor (ERalpha) target genes only upon gene induction, and that, in a cyclic pattern. Moreover, members of the human H2A.Z-depositing complex, p400, also follow the same gene recruitment kinetics as H2A.Z. Importantly, cellular depletion of H2A.Z or p400 leads to a severe defect in estrogen signaling, including loss of estrogen-specific cell proliferation. We find that incorporation of H2A.Z within TFF1 promoter chromatin allows nucleosomes to adopt preferential positions along the DNA translational axis. Finally, we provide evidence that H2A.Z is essential to allow estrogen-responsive enhancer function. Taken together, our results provide strong mechanistic insight into how H2A.Z regulates ERalpha-mediated gene expression and provide a novel link between H2A.Z-p400 and ERalpha-dependent gene regulation and enhancer function.


Assuntos
Adenosina Trifosfatases/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Receptores de Estrogênio/fisiologia , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/metabolismo , Estrogênios/fisiologia , Regulação da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Histonas/genética , Humanos , Ligantes , Nucleossomos/genética , Receptores de Estrogênio/genética , Fator Trefoil-1 , Proteínas Supressoras de Tumor/genética
5.
Nucleic Acids Res ; 41(17): 8094-106, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23828038

RESUMO

Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells.


Assuntos
Citocromo P-450 CYP1A1/genética , Metilação de DNA , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Repressoras/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Linhagem Celular , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1B1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/fisiologia , Metilação de DNA/efeitos dos fármacos , Histonas/antagonistas & inibidores , Histonas/metabolismo , Humanos , Células MCF-7 , Dibenzodioxinas Policloradas/farmacologia , Regiões Promotoras Genéticas , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , DNA Metiltransferase 3B
6.
BMC Cancer ; 14: 524, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25048790

RESUMO

BACKGROUND: 3,3'-diindolylmethane (DIM) is an acid-catalyzed dimer of idole-3-carbinol (I3C), a phytochemical found in cruciferous vegetables that include broccoli, Brussels sprouts and cabbage. DIM is an aryl hydrocarbon receptor (AhR) ligand and a potential anticancer agent, namely for the treatment of breast cancer. It is also advertised as a compound that regulates sex hormone homeostasis. METHODS: Here we make use of RNA expression assays coupled to Chromatin Immunoprecipitation (ChIP) in breast cancer cell lines to study the effect of DIM on estrogen signaling. We further make use of growth assays, as well as fluorescence-activated cell sorting (FACS) assays, to monitor cell growth. RESULTS: In this study, we report that 'physiologically obtainable' concentrations of DIM (10 µM) activate the estrogen receptor α (ERα) signaling pathway in the human breast cancer cell lines MCF7 and T47D, in a 17ß-estradiol (E2)-independent manner. Accordingly, we observe induction of ERα target genes such as GREB1 and TFF1, and an increase in cellular proliferation after treatment with 10 µM DIM in the absence of E2. By using an ERα specific inhibitor (ICI 182 780), we confirm that the transcriptional and proliferative effects of DIM treatment are mediated by ERα. We further show that the protein kinase A signaling pathway participates in DIM-mediated activation of ERα. In contrast, higher concentrations of DIM (e.g. 50 µM) have an opposite and expected effect on cells, which is to inhibit proliferation. CONCLUSIONS: We document an unexpected effect of DIM on cell proliferation, which is to stimulate growth by inducing the ERα signaling pathway. Importantly, this proliferative effect of DIM happens with potentially physiological concentrations that can be provided by the diet or by taking caplet supplements.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Indóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos
7.
Int J Mol Sci ; 15(9): 17148-61, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25257533

RESUMO

The abundance of dioxins and dioxin-like pollutants has massively increased in the environment due to human activity. These chemicals are particularly persistent and accumulate in the food chain, which raises major concerns regarding long-term exposure to human health. Most dioxin-like pollutants activate the aryl hydrocarbon receptor (AhR) transcription factor, which regulates xenobiotic metabolism enzymes that belong to the cytochrome P450 1A family (that includes CYP1A1 and CYP1B1). Importantly, a crosstalk exists between estrogen receptor α (ERα) and AhR. More specifically, ERα represses the expression of the CYP1A1 gene, which encodes an enzyme that converts 17ß-estradiol into 2-hydroxyestradiol. However, (ERα) does not repress the CYP1B1 gene, which encodes an enzyme that converts 17ß-estradiol into 4-hydroxyestradiol, one of the most genotoxic estrogen metabolites. In this review, we discuss how chronic exposure to xenobiotic chemicals, such as pesticides, might affect the expression of genes regulated by the AhR-ERα crosstalk. Here, we focus on recent advances in the understanding of molecular mechanisms that mediate this crosstalk repression, and particularly on how ERα represses the AhR target gene CYP1A1, and could subsequently promote breast cancer. Finally, we propose that genes implicated in this crosstalk could constitute important biomarkers to assess long-term effects of pesticides on human health.


Assuntos
Biomarcadores , Carcinógenos Ambientais/toxicidade , Transformação Celular Neoplásica/efeitos dos fármacos , Praguicidas/toxicidade , Neoplasias da Mama/etiologia , Cocarcinogênese , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/fisiologia , Dieta , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/fisiologia , Estrogênios , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Neoplásicos/efeitos dos fármacos , Humanos , Ligantes , Masculino , Neoplasias Hormônio-Dependentes/etiologia , Receptor Cross-Talk/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/fisiologia , Transdução de Sinais/efeitos dos fármacos , Xenobióticos/toxicidade
8.
Nucleic Acids Res ; 39(8): 3053-63, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21177650

RESUMO

The p53 protein is crucial for adapting programs of gene expression in response to stress. Recently, we revealed that this occurs partly through the formation of stress-specific p53 binding patterns. However, the mechanisms that generate these binding patterns remain largely unknown. It is not established whether the selective binding of p53 is achieved through modulation of its binding affinity to certain response elements (REs) or via a chromatin-dependent mechanism. To shed light on this issue, we used a microsphere assay for protein-DNA binding to measure p53 binding patterns on naked DNA. In parallel, we measured p53 binding patterns within chromatin using chromatin immunoprecipitation and DNase I coupled to ligation-mediated polymerase chain reaction footprinting. Through this experimental approach, we revealed that UVB and Nutlin-3 doses, which lead to different cellular outcomes, induce similar p53 binding patterns on naked DNA. Conversely, the same treatments lead to stress-specific p53 binding patterns on chromatin. We show further that altering chromatin remodeling using an histone acetyltransferase inhibitor reduces p53 binding to REs. Altogether, our results reveal that the formation of p53 binding patterns is not due to the modulation of sequence-specific p53 binding affinity. Rather, we propose that chromatin and chromatin remodeling are required in this process.


Assuntos
Cromatina/metabolismo , Elementos de Resposta , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Humanos , Imidazóis/farmacologia , Piperazinas/farmacologia , Ligação Proteica , RNA Mensageiro/metabolismo , Estresse Fisiológico , Terpenos/farmacologia , Raios Ultravioleta
9.
Environ Sci Pollut Res Int ; 30(60): 126104-126115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010540

RESUMO

In Daphnia magna, 20-hydroecdysone (20E) is the main molting hormone and its metabolism is of interest to identify new biomarkers of exposure to contaminants. The present study aimed to (i) assess baseline levels of 20E and transcription levels of four related-genes (shade, neverland, ultraspiracle, and ecdysteroid receptor); and (ii) evaluate effects in D. magna after 21 days of exposure to fenarimol (anti-ecdysteroid) and a mixture of gemfibrozil and clofibric acid (lipid-lowering drugs) at sublethal concentrations. Endpoints included transcription of the target genes and quantification of 20E, mortality, and reproduction of daphnids. Baseline results showed that average responses were relatively similar and did not vary more than 2-fold. However, intra-day variation was generally high and could be explained by sampling individuals with slightly different stages of their development. Exposure tests indicated a significant decrease in daphnid reproduction following chronic exposure to a concentration of 565 µg/L of fenarimol. However, no difference was observed between the control and exposed groups for any of the investigated genes, nor for the levels of 20E after 21 days of exposure. Following exposition to gemfibrozil and clofibric acid at 1 µg/L, no changes were observed for the measured parameters. These results suggest that changes in transcription levels of the target genes and concentrations of 20E may not be sensitive endpoints that can be used as biomarkers of sublethal exposure to the target compounds in D. magna. Measuring multiple time points instead of a single measure as well as additional molecular endpoints obtained from transcriptomic and metabolomic studies could afford more insights on the changes occurring in exposed daphnids to lipid-altering compounds and identify efficient biomarkers of sublethal exposure.


Assuntos
Ecdisterona , Poluentes Químicos da Água , Humanos , Animais , Ecdisterona/metabolismo , Ecdisterona/farmacologia , Muda/genética , Genfibrozila/toxicidade , Reprodução , Biomarcadores/metabolismo , Ácido Clofíbrico/metabolismo , Ácido Clofíbrico/farmacologia , Daphnia , Poluentes Químicos da Água/metabolismo
10.
Sci Rep ; 13(1): 21211, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040841

RESUMO

As modern agricultural practices increase their use of chemical pesticides, it is inevitable that we will find a number of these xenobiotics within drinking water supplies and disseminated throughout the food chain. A major problem that arises from this pollution is that the effects of most of these pesticides on cellular mechanisms in general, and how they interact with each other and affect human cells are still poorly understood. In this study we make use of cultured human cancer cells to measure by qRT-PCR how pesticides affect gene expression of stress pathways. Immunoblotting studies were performed to monitor protein expression levels and activation of signaling pathways. We make use of immunofluorescence and microscopy to visualize and quantify DNA damage events in those cells. In the current study, we evaluate the potential of a subset of widely used pesticides to activate the dioxin receptor pathway and affect its crosstalk with estrogen receptor signaling. We quantify the impact of these chemicals on the p53-dependent cellular stress response. We find that, not only can the different pesticides activate the dioxin receptor pathway, most of them have better than additive effects on this pathway when combined at low doses. We also show that different pesticides have the ability to trigger crosstalk events that may generate genotoxic estrogen metabolites. Finally, we show that some, but not all of the tested pesticides can induce a p53-dependent stress response. Taken together our results provide evidence that several xenobiotics found within the environment have the potential to interact together to elicit significant effects on cell systems. Our data warrants caution when the toxicity of substances that are assessed simply for individual chemicals, since important biological effects could be observed only in the presence of other compounds, and that even at very low concentrations.


Assuntos
Dioxinas , Praguicidas , Dibenzodioxinas Policloradas , Humanos , Praguicidas/toxicidade , Praguicidas/química , Dioxinas/toxicidade , Receptores de Hidrocarboneto Arílico , Proteína Supressora de Tumor p53/genética
11.
Microbiol Spectr ; : e0255022, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36815792

RESUMO

The incorporation of histone variant H2A.Z into nucleosomes creates specialized chromatin domains that regulate DNA-templated processes, such as gene transcription. In Saccharomyces cerevisiae, the diverging H2A.Z C terminus is thought to provide the H2A.Z exclusive functions. To elucidate the roles of this H2A.Z C terminus genome-wide, we used derivatives in which the C terminus was replaced with the corresponding region of H2A (ZA protein), or the H2A region plus a transcriptional activating peptide (ZA-rII'), with the intent of regenerating the H2A.Z-dependent regulation globally. The distribution of these H2A.Z derivatives indicates that the H2A.Z C-terminal region is crucial for both maintaining the occupation level of H2A.Z and the proper positioning of targeted nucleosomes. Interestingly, the specific contribution on incorporation efficiency versus nucleosome positioning varies enormously depending on the locus analyzed. Specifically, the role of H2A.Z in global transcription regulation relies on its C-terminal region. Remarkably, however, this mostly involves genes without a H2A.Z nucleosome in the promoter. Lastly, we demonstrate that the main chaperone complex which deposits H2A.Z to gene regulatory region (SWR1-C) is necessary to localize all H2A.Z derivatives at their specific loci, indicating that the differential association of these derivatives is not due to impaired interaction with SWR1-C. IMPORTANCE We provide evidence that the Saccharomyces cerevisiae C-terminal region of histone variant H2A.Z can mediate its special function in performing gene regulation by interacting with effector proteins and chaperones. These functional interactions allow H2A.Z not only to incorporate to very specific gene regulatory regions, but also to facilitate the gene expression process. To achieve this, we used a chimeric protein which lacks the native H2A.Z C-terminal region but contains an acidic activating region, a module that is known to interact with components of chromatin-remodeling entities and/or transcription modulators. We reasoned that because this activating region can fulfill the role of the H2A.Z C-terminal region, at least in part, the role of the latter would be to interact with these activating region targets.

12.
Nucleic Acids Res ; 38(Web Server issue): W308-12, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20519202

RESUMO

Efficiency and specificity of PCR amplification is dependent on several parameters, such as amplicon length, as well as hybridization specificity and melting temperature of primer oligonucleotides. Primer design is thus of critical importance for the success of PCR experiments, but can be a time-consuming and repetitive task, for example when large genomic regions are to be scanned for the presence of a protein of interest by chromatin immunoprecipitation experiments. We present here a webserver that allows the automated design of tiled primer pairs for any number of genomic loci. PCRTiler splits the target DNA sequences into smaller regions, and identifies candidate primers for each sub-region by running the well-known program Primer3 followed by the elimination of primers with a high cross-hybridization potential via BLAST. Tiling density and primer characteristics are specified by the user via a simple and user-friendly interface. The webserver can be accessed at http://pcrtiler.alaingervais.org:8080/PCRTiler. Additionally, users may download a standalone Java-based implementation of this software. Experimental validation of PCRTiler has demonstrated that it produces correct results. We have tiled a region of the human genome, in which 96 of 123 primer pairs worked in the first attempt, and 105 of 123 (85%) could be made to work by optimizing the conditions of the PCR assay.


Assuntos
Primers do DNA/química , Reação em Cadeia da Polimerase , Software , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Humanos , Internet
13.
PLoS Genet ; 5(10): e1000687, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19834540

RESUMO

A role for variant histone H2A.Z in gene expression is now well established but little is known about the mechanisms by which it operates. Using a combination of ChIP-chip, knockdown and expression profiling experiments, we show that upon gene induction, human H2A.Z associates with gene promoters and helps in recruiting the transcriptional machinery. Surprisingly, we also found that H2A.Z is randomly incorporated in the genome at low levels and that active transcription antagonizes this incorporation in transcribed regions. After cessation of transcription, random H2A.Z quickly reappears on genes, demonstrating that this incorporation utilizes an active mechanism. Within facultative heterochromatin, we observe a hyper accumulation of the variant histone, which might be due to the lack of transcription in these regions. These results show how chromatin structure and transcription can antagonize each other, therefore shaping chromatin and controlling gene expression.


Assuntos
Eucromatina , Heterocromatina , Histonas/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Histonas/genética , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
14.
J Biol Chem ; 285(21): 15966-77, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20332092

RESUMO

Structural and functional analyses of nucleosomes containing histone variant H2A.Z have drawn a lot of interest over the past few years. Important work in budding yeast has shown that H2A.Z (Htz1)-containing nucleosomes are specifically located on the promoter regions of genes, creating a specific chromatin structure that is poised for disassembly during transcription activation. The SWR1 complex is responsible for incorporation of Htz1 into nucleosomes through ATP-dependent exchange of canonical H2A-H2B dimers for Htz1-H2B dimers. Interestingly, the yeast SWR1 complex is functionally linked to the NuA4 acetyltransferase complex in vivo. NuA4 and SWR1 are physically associated in higher eukaryotes as they are homologous to the TIP60/p400 complex, which encompasses both histone acetyltransferase (Tip60) and histone exchange (p400/Domino) activities. Here we present work investigating the impact of NuA4-dependent acetylation on SWR1-driven incorporation of H2A.Z into chromatin. Using in vitro histone exchange assays with native chromatin, we demonstrate that prior chromatin acetylation by NuA4 greatly stimulates the exchange of H2A for H2A.Z. Interestingly, we find that acetylation of H2A or H4 N-terminal tails by NuA4 can independently stimulate SWR1 activity. Accordingly, we demonstrate that mutations of H4 or H2A N-terminal lysine residues have similar effects on H2A.Z incorporation in vivo, and cells carrying mutations in both tails are nonviable. Finally, depletion experiments indicate that the bromodomain-containing protein Bdf1 is important for NuA4-dependent stimulation of SWR1. These results provide important mechanistic insight into the functional cross-talk between chromatin acetylation and ATP-dependent exchange of histone H2A variants.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Histona Acetiltransferases/genética , Histonas/genética , Mutação , Nucleossomos/genética , Multimerização Proteica/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Biochem Cell Biol ; 89(5): 505-13, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21970734

RESUMO

During the last decades our view of the genome organization has changed. We moved from a linear view to a looped view of the genome. It is now well established that inter- and intra-connections occur between chromosomes and play a major role in gene regulations. These interconnections are mainly orchestrated by the CTCF protein, which is also known as the "master weaver" of the genome. Recent advances in sequencing and genome-wide studies revealed that CTCF binds to DNA at thousands of sites within the human genome, providing the possibility to form thousands of genomic connection hubs. Strikingly, two histone variants, namely H2A.Z and H3.3, strongly co-localize at CTCF binding sites. In this article, we will review the recent advances in CTCF biology and discuss the role of histone variants H2A.Z and H3.3 at CTCF binding sites.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação/genética , Fator de Ligação a CCCTC , Genoma Humano , Humanos , Coesinas
16.
BMC Mol Biol ; 10: 18, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19261190

RESUMO

BACKGROUND: Nucleosomes are nucleoproteic complexes, formed of eight histone molecules and DNA, and they are responsible for the compaction of the eukaryotic genome. Their presence on DNA influences many cellular processes, such as transcription, DNA replication, and DNA repair. The evolutionarily conserved histone variant H2A.Z alters nucleosome stability and is highly enriched at gene promoters. Its localization to specific genomic loci in human cells is presumed to depend either on the underlying DNA sequence or on a certain epigenetic modification pattern. RESULTS: We analyzed the differences in histone post-translational modifications and DNA sequences near nucleosomes that do or do not contain H2A.Z. We show that both the epigenetic context and underlying sequences can be used to classify nucleosomal regions, with highly significant accuracy, as likely to either contain H2A.Z or canonical histone H2A. Furthermore, our models accurately recapitulate the observed nucleosome occupancy near the transcriptional start sites of human promoters. CONCLUSION: We conclude that both genetic and epigenetic features are likely to participate in targeting H2A.Z to distinct chromatin loci.


Assuntos
Histonas/análise , Nucleossomos/química , Sequência de Bases , Cromatina , Epigênese Genética , Histonas/classificação , Humanos , Processamento de Proteína Pós-Traducional , Sítio de Iniciação de Transcrição
17.
Methods Mol Biol ; 543: 243-51, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19378170

RESUMO

The ensemble of the genes in the mammalian genome is organized into a structure of DNA and proteins known as chromatin. The control of gene expression by the proteins that bind to chromatin regulates many cell processes, such as differentiation and proliferation. Transcription of protein-encoding genes in mammalian cells is performed by the concerted action of the RNA polymerase II holoenzyme, transcription factors, co-activator complexes that bind to the promoter areas of genes. In addition, different proteins can interact with these complexes and chromatin to create a repressive state. In order to fundamentally understand transcriptional control, it is important to define the areas that these proteins will bind. Classical laboratory techniques unable to provide distinct locations of these factors have now been replaced by the chromatin immunoprecipitation (ChIP) assay. The ChIP technique allows us to isolate chromatin along with its associated proteins from cells and analyse the binding sites of specific proteins and complexes at high resolution.


Assuntos
Imunoprecipitação da Cromatina/métodos , Animais , Extratos Celulares , Linhagem Celular , Cromatina/metabolismo , Reagentes de Ligações Cruzadas/química , DNA/metabolismo , Eletroforese em Gel de Ágar , Formaldeído/química , Proteínas/metabolismo , Sonicação
18.
Methods Mol Biol ; 543: 281-91, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19378173

RESUMO

The basic repeating unit of chromatin, the nucleosome, is known to play a critical role in regulating the process of gene transcription. The positioning of nucleosomes on a promoter is a significant determinant in its responsiveness to gene-inducing signals. For example, positioning and subsequent mobilization of nucleosomes can regulate the access of various DNA factors to underlying DNA templates. Several mechanisms have been proposed to direct the process of nucleosome displacement such as chemical histone modifications, ATP-dependent remodelling, and the incorporation of histone variants. Thus, rather than being an inert molecular structure, chromatin is highly dynamic in response to the transcription process. In this section, we describe two methodologies that allow the determination of exact nucleosome positioning within specific gene regions.


Assuntos
Biologia Molecular/métodos , Nucleossomos/metabolismo , Animais , DNA/isolamento & purificação , Nuclease do Micrococo/metabolismo , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/citologia
19.
Sci Rep ; 9(1): 17643, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31754178

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Sci Rep ; 9(1): 4513, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872756

RESUMO

σE is one of the 13 sigma factors encoded by the Mycobacterium tuberculosis chromosome, and its involvement in stress response and virulence has been extensively characterized. Several sigma factors are post-translationally regulated by proteins named anti-sigma factors, which prevent their binding to RNA polymerase. Rv1222 (RseA), whose gene lays immediately downstream sigE, has been proposed in the past as the σE-specific anti sigma factor. However, its role as anti-sigma factor was recently challenged and a new mechanism of action was hypothesized predicting RseA binding to RNA polymerase and DNA to slow down RNA transcription in a not specific way. In this manuscript, using specific M. tuberculosis mutants, we showed that by changing the levels of RseA expression, M. tuberculosis growth rate does not change (as hypothesized in case of non-specific decrease of RNA transcription) and has an impact only on the transcription level of genes whose transcriptional control is under σE, supporting a direct role of RseA as a specific anti-σE factor.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA