Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2307813120, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437570

RESUMO

Lipid nanoparticles (LNPs) largely rely on ionizable lipids to yield successful nucleic acid delivery via electrostatic disruption of the endosomal membrane. Here, we report the identification and evaluation of ionizable lipids containing a thiophene moiety (Thio-lipids). The Thio-lipids can be readily synthesized via the Gewald reaction, allowing for modular lipid design with functional constituents at various positions of the thiophene ring. Through the rational design of ionizable lipid structure, we prepared 47 Thio-lipids and identified some structural criteria required in Thio-lipids for efficient mRNA (messenger RNA) encapsulation and delivery in vitro and in vivo. Notably, none of the tested lipids have a pH-response profile like traditional ionizable lipids, potentially due to the electron delocalization in the thiophene core. Placement of the tails and localization of the ionizable headgroup in the thiophene core can endow the nanoparticles with the capability to reach various tissues. Using high-throughput formulation and barcoding techniques, we optimized the formulations to select two top lipids-20b and 29d-and investigated their biodistribution in mice. Lipid 20b enabled LNPs to transfect the liver and spleen, and 29d LNP transfected the lung and spleen. Unexpectedly, LNP with lipid 20b was especially potent in mRNA delivery to the retina with no acute toxicity, leading to the successful delivery to the photoreceptors and retinal pigment epithelium in non-human primates.


Assuntos
Pulmão , Retina , Animais , Camundongos , Distribuição Tecidual , RNA Mensageiro/genética , Lipídeos
2.
Mol Ther ; 31(10): 2975-2990, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37644723

RESUMO

Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ. Advancements in nanotechnology utilize lipid nanoparticles (LNPs) to transport and deliver therapeutic RNA. However, there remains a gap in using LNPs to regulate gene and protein expression in the brain. To study the delivery of nucleic acids by LNPs to the brain, we found that LNPs released miR137 cargo and inhibited target transcripts of interest in neuroblastoma cells. Biodistribution of LNPs loaded with firefly luciferase mRNA remained localized to the mouse prefrontal cortex (PFC) injection site without circulating to off-target organs. LNPs encapsulating Cre mRNA preferentially co-expressed in neuronal over microglial or astrocytic cells. Using quantitative proteomics, we found miR137 modulated glutamatergic synaptic protein networks that are commonly dysregulated in SCZ. These studies support engineering the next generation of brain-specific LNPs to deliver RNA therapeutics and improve symptoms of central nervous system disorders.


Assuntos
Estudo de Associação Genômica Ampla , Nanopartículas , Animais , Camundongos , Distribuição Tecidual , Córtex Pré-Frontal , RNA , RNA Mensageiro , RNA Interferente Pequeno
3.
J Aquat Anim Health ; 35(4): 296-307, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38124493

RESUMO

OBJECTIVE: The objectives of this study were to describe spatiotemporal patterns of infectious salmon anemia virus (ISAV) detections in marine salmonid production sites in the province of Newfoundland and Labrador in Canada. METHODS: Infectious salmon anemia virus surveillance data between 2012 and 2020 from the province of Newfoundland and Labrador were used. Data comprised a total of 94 sampling events from 20 Atlantic Salmon Salmo salar production sites in which ISAV was detected. Using linear regression models, factors influencing time to detection (days from stocking to first ISAV detection) and time to depopulation (days from first detection to production site depopulation) were investigated. RESULT: Based on 28 unique cases, site-level annual incidence risk of ISAV detection ranged from 3% to 29%. The proportion of ISAV detection by PCR in fish samples ranged from 2% to 45% annually. Overall, ISAV variants from the European clade were more common than variants from the North American clade. The type of ISAV clade, detections of ISAV in nearest production sites based on seaway distances, and year of infectious salmon anemia cases were not associated with time to first ISAV detection. Time to depopulation for sites infected with the ISAV-HPRΔ variant was not associated with ISAV North American or European clades. CONCLUSION: Our results contribute to the further understanding of the changing dynamics of infectious salmon anemia detections in Newfoundland and Labrador since its first detection in 2012 and will likely assist in the design of improved disease surveillance and control programs in the province.


Assuntos
Anemia , Doenças dos Peixes , Isavirus , Infecções por Orthomyxoviridae , Salmo salar , Animais , Isavirus/genética , Terra Nova e Labrador/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Anemia/veterinária , Doenças dos Peixes/epidemiologia
4.
Pharm Res ; 37(8): 162, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32749542

RESUMO

PURPOSE: The goal of this study was to develop chemotherapeutic drug-loaded photoactivable stealth polymer-coated silica based- mesoporous titania nanoplatforms for enhanced antitumor activity. METHODS: Both in vitro and in vivo models of solvothermal treated photoactivable nanoplatforms were evaluated for efficient chemo-photothermal activity. A versatile nanocomposite that combined silica based- mesoporous titania nanocarriers (S-MTN) with the promising photoactivable agent, graphene oxide (G) modified with a stealth polymer (P) was fabricated to deliver chemotherapeutic agent, imatinib (I), (referred as S-MTN@IG-P) for near-infrared (NIR)-triggered drug delivery and enhanced chemo-photothermal therapy. RESULTS: The fabricated S-MTN@IG-P nanoplatform showed higher drug loading (~20%) and increased drug release (~60%) in response to light in acidic condition (pH 5.0). As prepared nanoplatform significantly converted NIR light into thermal energy (43.2°C) to produce reactive oxygen species (ROS). The pronounced cytotoxic effect was seen in both colon cancer cells (HCT-116 and HT-29) that was mediated through the chemotherapeutic effect of imatinib and the photothermal and ROS generation effects of graphene oxide. In vivo study also showed that S-MTN@IG-P could significantly accumulate into the tumor area and suppress the tumor growth under NIR irradiation without any biocompatibility issues. CONCLUSION: Cumulatively, the above results showed promising effects of S-MTN@IG-P for effective chemo-phototherapy of colon cancer.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico , Fotoquimioterapia/métodos , Titânio/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células HCT116 , Células HT29 , Humanos , Mesilato de Imatinib/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Espécies Reativas de Oxigênio , Dióxido de Silício
5.
Nanomedicine ; 21: 102042, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31247311

RESUMO

Targeted, biocompatible, and synergistic "all in one" systems should be designed to combat the heterogeneity of cancer. In this study, we constructed a dual function nanosystem, copper sulfide nanoplatform loaded with the chemotherapeutic drug docetaxel wrapped by a conjugated polymer-peptide for targeted chemo-phototherapy. The nanoconstruct has been successfully designed with a size of 186.1 ±â€¯5.2 nm, a polydispersity index of 0.18 ±â€¯0.01, and zeta potential of -16.4 ±â€¯0.1 mV. The enhanced uptake and near-infrared-responsive behavior of the nanosystem resulted in efficient drug release, photothermal ablation, effective cytotoxic activity, and potentiated reactive oxygen species generation. The induction of apoptotic markers, enhanced accumulation in the tumor site, and maximum tumor growth inhibition were seen during in vivo studies compared to non-targeted nanoformulations and free drug. Cumulatively, our results indicate that, with low systemic toxicity and better biocompatibility, this nanoconstruct could provide a promising strategy for treating prostate cancer.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Polímeros/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Cobre/química , Doxorrubicina/química , Liberação Controlada de Fármacos/efeitos da radiação , Humanos , Hipertermia Induzida , Masculino , Nanopartículas/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Fototerapia , Polímeros/química , Polímeros/efeitos da radiação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/química , Receptores de Somatostatina/genética , Somatostatina/análogos & derivados , Somatostatina/química , Somatostatina/farmacologia , Sulfetos/química
6.
Pharm Res ; 35(5): 96, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29536182

RESUMO

PURPOSE: Lung cancer is the leading cause of cancer-related deaths. The aim of this study was to design solid lipid core nanocapsules (SLCN) comprising a solid lipid core and a PEGylated polymeric corona for paclitaxel (PTX) and erlotinib (ERL) co-delivery to non-small cell lung cancer (NSCLC), and evaluate their physicochemical characteristics and in vitro activity in NCI-H23 cells. METHODS: PTX/ERL-SLCN were prepared by nanoprecipitation and sonication and physicochemically characterized by dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, X-ray diffraction, and Fourier-transform infrared spectroscopy. In vitro release profiles at pH 7.4 and pH 5.0 were studied and analyzed. In vitro cytotoxicity and cellular uptake and apoptosis assays were performed in NCI-H23 cells. RESULTS: PTX/ERL-SLCN exhibited appropriately-sized spherical particles with a high payload. Both PTX and ERL showed pH-dependent and sustained release in vitro profiles. PTX/ERL-SLCN demonstrated concentration- and time-dependent uptake by NCI-H23 cells and caused dose-dependent cytotoxicity in the cells, which was remarkably greater than that of not only the free individual drugs but also the free drug cocktail. Moreover, well-defined early and late apoptosis were observed with clearly visible signs of apoptotic nuclei. CONCLUSION: PTX/ERL-SLCN could be employed as an optimal approach for combination chemotherapy of NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cloridrato de Erlotinib/farmacocinética , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Cloridrato de Erlotinib/administração & dosagem , Humanos , Neoplasias Pulmonares/patologia , Nanocápsulas , Paclitaxel/administração & dosagem
7.
J Mol Cell Cardiol ; 81: 139-49, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724725

RESUMO

The transplantation of adipose tissue-derived stem cells (ADSCs) improves cardiac contractility after myocardial infarction (MI); however, little is known about the electrophysiological consequences of transplantation. The purpose of this study was to clarify whether the transplantation of ADSCs increases or decreases the incidence of ventricular tachyarrhythmias (VT) in a rat model of MI. MI was induced experimentally by permanent occlusion of the left anterior descending artery of Lewis rats. ADSCs were harvested from GFP-transgenic rats, and were cultured until passage four. ADSCs (10×10(6)) resuspended in 100µL saline or pro-survival cocktail (PSC), which enhances cardiac graft survival, were injected directly into syngeneic rat hearts 1week after MI. The recipients of ADSCs suspended in PSC had a larger graft area compared with those receiving ASDCs suspended in saline at 1week post-transplantation (number of graft cells/section: 148.7±10.6 vs. 22.4±3.4, p<0.05, n=5/group). Thereafter, all ADSC recipients were transplanted with ASDCs in PSC. ADSCs were transplanted into infarcted hearts, and the mechanical and electrophysiological functions were assessed. Echocardiography revealed that ADSC recipients had improved contractile function compared with those receiving PSC vehicle (fractional shortening: 21.1±0.9 vs. 14.1±1.2, p<0.05, n≥12/group). Four weeks post-transplantation, VT was induced via in vivo programmed electrical stimulation. The recipients of ADSCs showed a significantly lower incidence of induced VT compared with the control (31.3% vs. 83.3%, p<0.05, n≥12/group). To understand the electrical activity following transplantation, we performed ex vivo optical mapping using a voltage sensitive dye, and found that ADSC transplantation decreased conduction velocity and its dispersion in the peri-infarct area. These results suggest that ADSC transplantation improved cardiac mechanical and electrophysiological functions in subacute MI.


Assuntos
Adipócitos/fisiologia , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Células-Tronco/fisiologia , Taquicardia/terapia , Adipócitos/citologia , Animais , Diferenciação Celular , Proliferação de Células , Vasos Coronários/patologia , Modelos Animais de Doenças , Estimulação Elétrica , Sistema de Condução Cardíaco , Masculino , Contração Miocárdica , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Ratos , Ratos Endogâmicos Lew , Células-Tronco/citologia , Taquicardia/patologia , Taquicardia/fisiopatologia , Transplante Isogênico
8.
J Mol Biol ; : 168694, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971557

RESUMO

Predicting the consensus structure of a set of aligned RNA homologs is a convenient method to find conserved structures in an RNA genome, which has many applications including viral diagnostics and therapeutics. However, the most commonly used tool for this task, RNAalifold, is prohibitively slow for long sequences, due to a cubic scaling with the sequence length, taking over a day on 400 SARS-CoV-2 and SARS-related genomes (∼30,000nt). We present LinearAlifold, a much faster alternative that scales linearly with both the sequence length and the number of sequences, based on our work LinearFold that folds a single RNA in linear time. Our work is orders of magnitude faster than RNAalifold (0.7 h on the above 400 genomes, or ∼36× speedup) and achieves higher accuracies when compared to a database of known structures. More interestingly, LinearAlifold's prediction on SARS-CoV-2 correlates well with experimentally determined structures, substantially outperforming RNAalifold. Finally, LinearAlifold supports two energy models (Vienna and BL*) and four modes: minimum free energy (MFE), maximum expected accuracy (MEA), ThreshKnot, and stochastic sampling, each of which takes under an hour for hundreds of SARS-CoV variants. Our resource is at: https://github.com/LinearFold/LinearAlifold (code) and http://linearfold.org/linear-alifold (server).

9.
AAPS J ; 25(4): 65, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380935

RESUMO

Prime editing is an advanced gene editing platform with potential to correct almost any disease-causing mutation. As genome editors have evolved, their size and complexity have increased, hindering delivery technologies with low-carrying capacity and endosomal escape. We formulated an array of lipid nanoparticles (LNPs) containing prime editors (PEs). We were able to encapsulate PEs in LNPs and confirmed the presence of PE mRNA and two different guide RNAs using HPLC. In addition, we developed a novel reporter cell line for rapid identification of LNPs suited for prime editing. A 54% prime editing rate was observed with enhanced LNPs (eLNPs) containing the cholesterol analog ß-sitosterol at optimal ratios of RNA cargoes. eLNPs displayed a polyhedral morphology and a more fluid membrane state that led to improved endosomal escape, eventually causing onset of editing within 9 h and reaching maximum efficiency after 24 h. Hence, PEs delivered using LNPs can propel a new wave of therapies for many additional targets potentially enabling a range of new applications.


Assuntos
Endossomos , Edição de Genes , Linhagem Celular , Cromatografia Líquida de Alta Pressão
10.
Nat Commun ; 14(1): 6468, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833442

RESUMO

Ocular delivery of lipid nanoparticle (LNPs) packaged mRNA can enable efficient gene delivery and editing. We generated LNP variants through the inclusion of positively charged-amine-modified polyethylene glycol (PEG)-lipids (LNPa), negatively charged-carboxyl-(LNPz) and carboxy-ester (LNPx) modified PEG-lipids, and neutral unmodified PEG-lipids (LNP). Subretinal injections of LNPa containing Cre mRNA in the mouse show tdTomato signal in the retinal pigmented epithelium (RPE) like conventional LNPs. Unexpectedly, LNPx and LNPz show 27% and 16% photoreceptor transfection, respectively, with striking localization extending from the photoreceptor synaptic pedicle to the outer segments, displaying pan-retinal distribution in the photoreceptors and RPE. LNPx containing Cas9 mRNA and sgAi9 leads to the formation of an oval elongated structure with a neutral charge resulting in 16.4% editing restricted to RPE. Surface modifications of LNPs with PEG variants can alter cellular tropism of mRNA. LNPs enable genome editing in the retina and in the future can be used to correct genetic mutations that lead to blindness.


Assuntos
Nanopartículas , Polietilenoglicóis , Animais , Camundongos , Polietilenoglicóis/química , Edição de Genes , Nanopartículas/química , Epitélio Pigmentado da Retina , RNA Mensageiro/química , Lipídeos/química , RNA Interferente Pequeno
11.
Sci Adv ; 9(2): eadd4623, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630502

RESUMO

Lipid nanoparticle (LNP)-based mRNA delivery holds promise for the treatment of inherited retinal degenerations. Currently, LNP-mediated mRNA delivery is restricted to the retinal pigment epithelium (RPE) and Müller glia. LNPs must overcome ocular barriers to transfect neuronal cells critical for visual phototransduction, the photoreceptors (PRs). We used a combinatorial M13 bacteriophage-based heptameric peptide phage display library for the mining of peptide ligands that target PRs. We identified the most promising peptide candidates resulting from in vivo biopanning. Dye-conjugated peptides showed rapid localization to the PRs. LNPs decorated with the top-performing peptide ligands delivered mRNA to the PRs, RPE, and Müller glia in mice. This distribution translated to the nonhuman primate eye, wherein robust protein expression was observed in the PRs, Müller glia, and RPE. Overall, we have developed peptide-conjugated LNPs that can enable mRNA delivery to the neural retina, expanding the utility of LNP-mRNA therapies for inherited blindness.


Assuntos
Nanopartículas , Roedores , Camundongos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ligantes , Retina/metabolismo , Peptídeos/metabolismo , Primatas
12.
Biomaterials ; 284: 121511, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398587

RESUMO

The significant advances in nano-drug delivery systems (NDDS) for anticancer agents have led to the development of computational techniques, such as machine learning and neural networks to identify the optimal architectural and compositional design in a wide variety of therapeutic nanoformulations. On the other hand, few studies have examined downsized plug-in reaction-ware embodied in an autonomous platform for the instant reconfigurable production of engineered nanomaterials to guide optimal NDDS designs and delivery strategies. This paper describes an on-demand system for an electrically operable, continuously processible material produced by sequential spray pyrolysis and vibrating spray for single-pass NDDS assembly. In particular, a mild chemotherapeutic NDDS consisting of amorphous boron nitride (a-BN; a stable base material for loading), doxorubicin (DOX; an anticancer drug), and folic acid-chitosan conjugate (FACHI; a targeting and antiopsonic agent), called a-BN-DOX@FACHI, was fabricated using the developed system. a-BN-DOX@FACHI was assessed for the pH-responsive release of DOX, targeting of the folate receptor, and its resistance to opsonization and macrophage phagocytosis. a-BN-DOX@FACHI was found to be a mild cancer chemotherapeutic with reasonable biosafety. Integrating a metal ablation device with the developed on-demand system enabled the reconfiguration of NDDS from a-BN-DOX@FACHI to a-BN-Au-DOX@FACHI or a-BN-Pt-cisplatin@bovine serum albumin to add a photothermal effect with a range of architectures and compositions.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Aerossóis , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Fármacos por Nanopartículas
13.
J Pharm Investig ; 51(4): 361-375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996174

RESUMO

BACKGROUND: Traditionally, nanoparticles for biomedical applications have been produced via the classical wet chemistry method, with size control remaining a major problem in drug delivery. In recent years, advances in aerosol-based technologies have led to the development of methods that enable the production of nanosized particles and have opened up new opportunities in the field of nano-drug delivery and biomedicine. Aerosol-based technologies have been constantly used to synthesize multifunctional nanoparticles with different properties, which extends their possible biological and medicinal applications. Moreover, aerosol technologies are often more beneficial than other existing approaches because of the major disadvantages of these other techniques. AREA COVERED: This review provides a brief discussion of the existing aerosol-based nanotechnologies and applications of nanoparticles in a variety of diseases. Various types of nanoparticles, such as graphene oxide, Prussian blue, black phosphorous, gold, copper, silver, tellurium, iron oxide, titania, magnesium oxide, and zinc oxide nanoparticles, prepared using aerosol technologies are discussed in this review. The different tactics used for surface modifications are also outlined. The biomedical applications of nanoparticles in chemotherapy, bacterial/fungal/viral treatment, disease diagnosis, and biological assays are also presented in this review. EXPERT OPINION: Aerosol-based technologies can be used to design nanoparticles with the desired functionality. This significantly benefits the nanomedicine field, particularly as product parameters are becoming more encompassing and exacting. One of the biggest issues with conventional methods is their scale-up/scale-down and clinical translation. Aerosol-based nanoparticle synthesis helps enhance control over the product properties and facilitate their use for clinical applications.

14.
Front Vet Sci ; 8: 637637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659287

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic enteritis that causes major losses to the global livestock industry. Further, it has been associated with human Crohn's disease. Several strains of MAP have been identified, the two major groups being sheep strain MAP, which includes the Type I and Type III sub-lineages, and the cattle strain or Type II MAP lineage, of which bison strains are a sub-grouping. Major genotypic, phenotypic and pathogenic variations have been identified in prior comparisons, but the research has predominately focused on cattle strains of MAP. In countries where the sheep industries are more prevalent, however, such as Australia and New Zealand, ovine JD is a substantial burden. An information gap exists regarding the genomic differences between sheep strain sub-lineages and the relevance of Type I and Type III MAP in terms of epidemiology and/or pathogenicity. We therefore investigated sheep MAP isolates from Australia and New Zealand using whole genome sequencing. For additional context, sheep MAP genome datasets were downloaded from the Sequence Read Archive and GenBank. The final dataset contained 18 Type III and 16 Type I isolates and the K10 cattle strain MAP reference genome. Using a pan-genome approach, an updated global phylogeny for sheep MAP from de novo assemblies was produced. When rooted with the K10 cattle reference strain, two distinct clades representing the lineages were apparent. The Australian and New Zealand isolates formed a distinct sub-clade within the type I lineage, while the European type I isolates formed another less closely related group. Within the type III lineage, isolates appeared more genetically diverse and were from a greater number of continents. Querying of the pan-genome and verification using BLAST analysis revealed lineage-specific variations (n = 13) including genes responsible for metabolism and stress responses. The genetic differences identified may represent important epidemiological and virulence traits specific to sheep MAP. This knowledge will potentially contribute to improved vaccine development and control measures for these strains.

15.
Nanoscale ; 13(2): 1231-1247, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33406178

RESUMO

Targeted and stimuli-sensitive nanobombs for the release of therapeutic agents after laser irradiation of the tumor site are gaining widespread attention as personalized anticancer regimens. In this study, redox and photo dual-responsive, folate receptor-targeted nanourchin carriers for chemo-, photodynamic, and photothermal therapy were constructed by the amalgamation of an outer layer of polyethylene glycol (PEG)-S-S-methotrexate (MTX) and an inner core of indocyanine green (ICG)-loaded bismuth sulfide (Bi2S3) nanoparticles for cancer treatment. MTX introduces the carrier to folate receptors resulting in the internalization of nanoparticles into cancer cells, specifically and increasingly. In the reducing environment inside cancer cells, MTX was cleaved, resulting in a burst release that effectively inhibited tumor growth. Simultaneously, the fusion of Bi2S3 and ICG in the inner core absorbed energy from a near-infrared radiation (NIR) laser to generate heat and reactive oxygen species, which further ablated the tumors and synergistically enhanced the anticancer activity of MTX. These results indicate the successful preparation of combined nanourchins (NUs) showing GSH-induced and laser-responsive release of MTX and ICG, accompanied by hyperthermia via Bi2S3 and ICG. Effective in vitro cellular internalization, cellular cytotoxicity, and pro-apoptotic behavior of the nanosystem were achieved through a targeting, redox, and NIR-responsive combination strategy. In vivo biodistribution and photothermal imaging also revealed tumor-selective and -retentive, as well as thermally responsive attributes. Ultimately, this in vivo antitumor study shows an effective tumor ablation by these nanourchins without affecting the vital organs. Our findings indicate that using these targeted redox- and laser-responsive combination therapeutic carriers can be a promising strategy in folate receptor-expressing tumors.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Bismuto , Linhagem Celular Tumoral , Humanos , Verde de Indocianina , Neoplasias/tratamento farmacológico , Oxirredução , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Sulfetos , Distribuição Tecidual
16.
Biomaterials ; 269: 120677, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33503557

RESUMO

Senescent cells drive atherosclerosis at all stages and contribute to cardiovascular disease. However, the markers in these senescent aortic plaques have not been well studied, creating a huge obstacle in the exploration of a precise and efficient system for atherosclerosis treatment. Recently, CD9 has been found to induce cellular senescence and aggravated atherosclerotic plaque formation in apolipoprotein E knockout (ApoE-/-) mice. In the present study, this result has been leveraged to develop CD9 antibody-modified, hyaluronic acid-coated mesoporous silica nanoparticles with a hyaluronidase-responsive drug release profile. In invitro models of senescent foamy macrophages and senescent endothelial cells stimulated with oxidized high-density-lipoprotein, the CD9 antibody-modified mesoporous silica nanoparticles exhibit high cellular uptake; reduce the reactive oxygen species level, high-density lipoprotein oxidation, and production of TNF-α and IL-6; and attenuate the senescence process, contributing to improved cell viability. In vivo experiment demonstrated that these nanoparticles can successfully target the senescent lesion areas, deliver the anti-senescence drug rosuvastatin to the senescent atherosclerotic plaques (mainly endothelial cells and macrophages), and alleviate the progression of atherosclerosis in ApoE-/- mice. By providing deep insight regarding the markers in senescent atherosclerotic plaque and developing a nano-system targeting this lesion area, the study proposes a novel and an accurate therapeutic approach for mitigating atherosclerosis through senescent cell clearance.


Assuntos
Aterosclerose , Células Endoteliais , Macrófagos , Nanopartículas , Placa Aterosclerótica , Animais , Aorta , Aterosclerose/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/tratamento farmacológico , Dióxido de Silício
17.
Int J Pharm ; 582: 119330, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32298743

RESUMO

The hindrances in achieving clinically translatable anticancer platforms are being tackled through nanotechnology-based formulations. In this study, stimuli-responsive, phytoactive constituent-loaded nanophytoliposomes were fabricated for designing a specific antitumor platform. Ursolic acid (UA)-loaded nanophytoliposomes (UA-PLL-HA.P) enwrapped in a poly-L-lysine (PLL) coat and hyaluronic acid (HA) were nanosized; these nanophytoliposomes had spherical morphology, slightly negative charge, and an in-range polydispersity index (~0.25). Successful fabrication of the nanosystem was proven through several characterization methods and the pH- and enzyme-responsiveness of the nanosystem was assessed through a release study. The cellular internalization in CD44 receptor-expressing cell lines was amplified by enhanced permeation and retention as well as by active targeting. In vitro antitumor behavior was confirmed through in vitro cytotoxic and apoptotic activity of the nanosystem. Similarly, in vivo imaging showed exceptional biodistribution in the tumor in agreement with the in vitro findings. Moreover, the tumor inhibitory rate of UA-PLL-HA.P was significantly higher, and was ascribed to the targeting potential and stimuli-responsiveness. In summary, UA-PLL-HA.P exhibited pronounced anticancer effect and could open a number of possibilities for discovering novel phytoconstituent-incorporated nanoformulations.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ácido Hialurônico/química , Nanopartículas , Neoplasias/tratamento farmacológico , Polilisina/química , Polímeros Responsivos a Estímulos/química , Triterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Lipossomos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Distribuição Tecidual , Triterpenos/química , Triterpenos/metabolismo , Ácido Ursólico
18.
Aorta (Stamford) ; 8(6): 169-171, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33761563

RESUMO

We report the case of a 12-year-old girl with balanced double aortic arch with coarctation of the aorta presenting with symptoms of respiratory and swallowing difficulty. On investigation, the patient had a double aortic arch with coarctation and clinically nonsignificant disease in the infrarenal aorta. Division of the nondominant aortic arch was done through a left thoracotomy, along with resection of the coarctation segment and placement of an interposition Dacron tube graft.

19.
ACS Appl Mater Interfaces ; 12(51): 56767-56781, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33289550

RESUMO

The consolidation of nanovectors with biological membranes has recently been a subject of interest owing to the prolonged systemic circulation time and delayed clearance by the reticuloendothelial system of such systems. Among the different biomembranes, the macrophage membrane has a similar systemic circulation time, with an additional chemotactic aptitude, targeting integrin proteins. In this study, we aimed to establish a laser-activated, disintegrable, and deeply tumor-penetrative nanoplatform. We used a highly tumor-ablative and laser-responsive disintegrable copper sulfide nanoparticle, loaded it with paclitaxel, and camouflaged it with the macrophage membrane for the fabrication of PTX@CuS@MMNPs. The in vitro paclitaxel release profile was favorable for release in the tumor microenvironment, and the release was accelerated after laser exposure. Cellular internalization was improved by membrane encapsulation. Cellular uptake, cytotoxicity, reactive oxygen species generation, and apoptosis induction of PTX@CuS@MMNPs were further improved upon laser exposure, and boosted permeation was achieved by co-administration of the tumor-penetrating peptide iRGD. In vivo tumor accumulation, tumor inhibition rate, and apoptotic marker expression induced by PTX@CuS@MMNPs were significantly improved by laser irradiation and iRGD co-administration. PTX@CuS@MMNPs induced downregulation of cellular proliferation and angiogenic markers but no significant changes in body weight, survival, or significant toxicities in vital organs after laser exposure, suggesting their biocompatibility. The disintegrability of the nanosystem, accredited to biodegradability, favored efficient elimination from the body. In conclusion, PTX@CuS@MMNPs showed promising traits in combination therapies for excellent tumor eradication.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Membrana Celular/química , Macrófagos/química , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Paclitaxel/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cobre/química , Cobre/efeitos da radiação , Cobre/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/efeitos da radiação , Portadores de Fármacos/toxicidade , Raios Infravermelhos , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7
20.
Expert Opin Drug Deliv ; 17(3): 423-434, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028805

RESUMO

Background: Phytosterols significantly reduce the risk of cancer by directly inhibiting tumor growth, inducing apoptosis, and inhibiting tumor metastasis. Stigmasterol (STS), a phytosterol, exhibits anticancer effects against various cancers, including breast cancer. Chemotherapeutics, including doxorubicin (DOX), might act synergistically with phytosterol against the proliferation and metastasis of breast cancer. Although such compounds can show potential anticancer activity, their combined effect with suitable formulation has not investigated yet.Methods: Hyaluronic acid (HA)-modified PEGylated DOX-STS loaded phyto-liposome was fabricated via a thin-film hydration method. The prepared phyto-liposome was optimized with regards to its physicochemical and other properties. Further, in vitro and in vivo study was carried out in breast cancer cells expressing a different level of CD44 receptors.Results: The particle size of prepared HA-DOX-STS-lipo was 173.9 ± 2.4 nm, and showed pH-depended DOX release, favoring the effective tumor targetability. The in vitro anticancer activity of HA-DOX-STS-lipo was significantly enhanced in MDA-MB-231, CD44-overexpressing cells relative to MCF-7 cells demonstrating HA-mediated targeting effect. HA-DOX-STS-lipo accumulated more and increased antitumor efficacy in the MDA-MB-231 xenograft tumor model expressing high levels of CD44, suggesting the potential of carrier system toward CD44-overexpressing tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/análogos & derivados , Fitosteróis/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Lipossomos , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA