RESUMO
TGF-ß1 is a pleiotropic cytokine with an established role in fibrosis; however, the immunosuppressive effects of TGF-ß1 are less characterized. Elevated levels of TGF-ß1 are found in patients with acute and chronic lung diseases, and the underlying disease processes are exacerbated by respiratory viral infections. The alveolar macrophage is the first line of cellular defense against respiratory viral infections, and its response to infections is dependent on environmental cues. Using the mouse alveolar macrophage line, MH-S, and human CD14+ monocyte-derived macrophages, we examined the effects of TGF-ß1 on the type I IFN antiviral response, macrophage polarization, and mitochondrial bioenergetics following a challenge with human respiratory syncytial virus (RSV). Our results showed that TGF-ß1 treatment of macrophages decreased the antiviral and proinflammatory response, and suppressed basal, maximal, spare mitochondrial respiration, and mitochondrial ATP production. Challenge with RSV following TGF-ß1 treatment further exacerbated mitochondrial dysfunction. The TGF-ß1 and TGF-ß1+RSV-treated macrophages had a higher frequency of apoptosis and diminished phagocytic capacity, potentially through mitochondrial stress. Disruption of TGF-ß1 signaling or rescue of mitochondrial respiration may be novel therapeutically targetable pathways to improve macrophage function and prevent secondary bacterial infections that complicate viral respiratory infections.
Assuntos
Interferon Tipo I/metabolismo , Macrófagos Alveolares/metabolismo , Mitocôndrias/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/patogenicidade , Transdução de Sinais/fisiologiaAssuntos
Pirimidinas , Feminino , Animais , Pirimidinas/efeitos adversos , Gravidez , Morfogênese/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Metais Pesados/toxicidade , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , HumanosRESUMO
BACKGROUND: The health implications of in utero alcohol exposure have been difficult to study in very-low-birth-weight newborns (VLBW) because of an inability to identify maternal alcohol exposure. Fatty acid ethyl esters (FAEEs) are elevated in meconium of alcohol-exposed term newborns. We hypothesized that meconium FAEEs would be similarly elevated in alcohol-exposed VLBW premature newborns. METHODS: In a retrospective cohort study of 64 VLBW neonates, newborns were classified into Non-Exposed, Any Exposure, or Weekly Exposure groups based on an in-depth structured maternal interview. Meconium FAEE concentrations were quantified via gas chromatography mass spectrometry. RESULTS: Alcohol exposure during Trimester 1 (Any Exposure) occurred in ~30% of the pregnancies, while 11% of the subjects reported drinking ≥ 1 drink/week (Weekly Exposure). Meconium ethyl linolenate was higher in Any Exposure (P = 0.01) and Weekly Exposure groups (P = 0.005) compared to the Non-Exposed VLBW group. There was a significant positive correlation between Trimester 1 drinking amounts and the concentration of meconium ethyl linolenate (P = 0.005). Adjusted receiver operating characteristic (ROC) curves evaluating ethyl linolenate to identify alcohol-exposed VLBW newborns generated areas under the curve of 88% with sensitivities of 86-89% and specificities of 83-88%. CONCLUSION: Despite prematurity, meconium FAEEs hold promise to identify the alcohol-exposed VLBW newborn.
Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Ácidos Linolênicos/análise , Exposição Materna , Mecônio/química , Biomarcadores/análise , Estudos de Coortes , Etanol , Ácidos Graxos/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Gravidez , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Inquéritos e QuestionáriosRESUMO
Maternal alcohol use during pregnancy exposes both premature and term newborns to the toxicity of alcohol and its metabolites. Foetal alcohol exposure adversely effects the lung. In contrast to the adult "alcoholic lung" phenotype, an inability to identify the newborn exposed to alcohol in utero has limited our understanding of its effect on adverse pulmonary outcomes. This paper will review advances in biomarker development of in utero alcohol exposure. We will highlight the current understanding of in utero alcohol's toxicity to the developing lung and immune defense. Finally, we will present recent clinical evidence describing foetal alcohol's association with adverse pulmonary outcomes including bronchopulmonary dysplasia, viral infections such as respiratory syncytial virus and allergic asthma/atopy. With research to define alcohol's effect on the lung and translational studies accurately identifying the exposed offspring, the full extent of alcohol's effects on clinical respiratory outcomes of the newborn or child can be determined.
Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Doenças do Sistema Imunitário/epidemiologia , Pneumopatias/epidemiologia , Pulmão/embriologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/sangue , Asma/epidemiologia , Asma/etiologia , Biomarcadores/sangue , Displasia Broncopulmonar/epidemiologia , Displasia Broncopulmonar/etiologia , Criança , Feminino , Glucuronatos/sangue , Glicerofosfolipídeos/sangue , Humanos , Doenças do Sistema Imunitário/etiologia , Recém-Nascido , Pneumopatias/etiologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Hipersensibilidade Respiratória/epidemiologia , Hipersensibilidade Respiratória/etiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/etiologia , Ésteres do Ácido Sulfúrico/sangueRESUMO
BACKGROUND: Chronic alcohol exposure alters the function of alveolar macrophages (AM), impairing immune defenses in both adult and neonatal lungs. Fatty acid ethyl esters (FAEEs) are biological markers of prenatal alcohol exposure in newborns. FAEEs contribute to alcohol-induced mitochondrial (MT) damage in multiple organs. We hypothesized that in utero ethanol exposure would increase FAEEs in the neonatal lung and that direct exposure of neonatal AM to FAEEs would contribute to MT injury and cellular dysfunction. METHODS: FAEEs were measured in neonatal guinea pig lungs after ± in utero ethanol exposure via gas chromatography/mass spectrometry. The NR8383 cell line and freshly isolated neonatal guinea pig AM were exposed to ethyl oleate (EO) in vitro. MT membrane potential, MT reactive oxygen species generation (mROS), phagocytosis, and apoptosis were evaluated after exposure to EO ± the MT-specific antioxidant mito-TEMPO (mitoT) or ± the pan-caspase inhibitor Z-VAD-FMK. Whole lung FAEEs were compared using the Mann-Whitney U-test. Cellular results were analyzed using 1-way analysis of variance, followed by the Student-Newman-Keuls Method for post hoc comparisons. RESULTS: In utero ethanol significantly increased ethyl linoleate and the combinations of ethyl oleate + linoleate + linolenate (OLL), and OLL + stearate in the neonatal lung. In vitro EO caused significant MT dysfunction in both NR8383 and primary neonatal AM, as indicated by increased mROS and loss of MT membrane potential. Impaired phagocytosis and apoptosis were significantly increased in both the cell line and primary AM after EO exposure. MitoT conferred significant but only partial protection against EO-induced MT injury, as did caspase inhibition with Z-VAD-FMK. CONCLUSIONS: In utero ethanol exposure increased FAEEs in the neonatal guinea pig lung. Direct exposure to the FAEE EO significantly contributed to AM dysfunction, in part via oxidant injury to the MT and in part via secondary apoptosis.
Assuntos
Etanol/toxicidade , Ácidos Graxos não Esterificados/toxicidade , Pulmão/citologia , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Cobaias , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Mitocôndrias/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismoRESUMO
AIMS: (a) Establish the minimum number of weeks of chronic ethanol ingestion needed to perturb zinc homeostasis, (b) Examine intracellular zinc status in the alveolar macrophages (AMs) when ethanol ingestion is combined with pregnancy, (c) Investigate whether in vitro zinc treatment reverses the effects of ethanol ingestion on the AM. METHODS: C57BL/6 female mice were fed a liquid diet (±25% ethanol-derived calories) during preconception and pregnancy. The control group was pair-fed to the ethanol group. In the isolated AMs, we measured intracellular AM zinc levels, zinc transporter expression, alternative activation and phagocytic index. Zinc acetate was added to some cells prior to analysis. RESULTS: Intracellular zinc levels in the AM decreased within 3 weeks of ethanol ingestion. After ethanol ingestion prior to and during pregnancy, zinc transporter expression and intracellular zinc levels were decreased in the AMs when compared with controls. Bacterial clearance was decreased because the AMs were alternatively activated. In vitro additions of zinc reversed these effects of ethanol. CONCLUSION: Ethanol ingestion prior to and during pregnancy perturbed AM zinc balance resulting in impaired bacterial clearance, but these effects were ameliorated by in vitro zinc treatments.
Assuntos
Etanol/efeitos adversos , Macrófagos Alveolares/efeitos dos fármacos , Zinco/deficiência , Animais , Proteínas de Transporte/análise , Proteínas de Transporte/biossíntese , Feminino , Macrófagos Alveolares/química , Macrófagos Alveolares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Gravidez , Complicações na Gravidez/induzido quimicamente , Zinco/análiseRESUMO
Myofibroblast accumulation is a pathological feature of lung diseases requiring oxygen therapy. One possible source for myofibroblasts is through the epithelial-to-mesenchymal transition (EMT) of alveolar epithelial cells (AEC). To study the effects of oxygen on alveolar EMT, we used RLE-6TN and ex vivo lung slices and found that hyperoxia (85% O2, H85) decreased epithelial proteins, presurfactant protein B (pre-SpB), pro-SpC, and lamellar protein by 50% and increased myofibroblast proteins, α-smooth muscle actin (α-SMA), and vimentin by over 200% (P < 0.05). In AEC freshly isolated from H85-treated rats, mRNA for pre-SpB and pro-SpC was diminished by â¼50% and α-SMA was increased by 100% (P < 0.05). Additionally, H85 increased H2O2 content, and H2O2 (25-50 µM) activated endogenous transforming growth factor-ß1 (TGF-ß1), as evident by H2DCFDA immunofluorescence and ELISA (P < 0.05). Both hyperoxia and H2O2 increased SMAD3 phosphorylation (260% of control, P < 0.05). Treating cultured cells with TGF-ß1 inhibitors did not prevent H85-induced H2O2 production but did prevent H85-mediated α-SMA increases and E-cadherin downregulation. Finally, to determine the role of TGF-ß1 in hyperoxia-induced EMT in vivo, we evaluated AEC from H85-treated rats and found that vimentin increased â¼10-fold (P < 0.05) and that this effect was prevented by intraperitoneal TGF-ß1 inhibitor SB-431542. Additionally, SB-431542 treatment attenuated changes in alveolar histology caused by hyperoxia. Our studies indicate that hyperoxia promotes alveolar EMT through a mechanism that is dependent on activation of TGF-ß1 signaling.
Assuntos
Transição Epitelial-Mesenquimal , Hiperóxia/patologia , Alvéolos Pulmonares/patologia , Células Epiteliais Alveolares/fisiologia , Animais , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Hiperóxia/metabolismo , Masculino , Miofibroblastos/metabolismo , Fenótipo , Alvéolos Pulmonares/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Técnicas de Cultura de Tecidos , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND: Analysis of exhaled breath condensates (EBC) is a non-invasive technique to evaluate biomarkers such as antioxidants in the pediatric population, but limited data exists of its use in intubated patients, particularly newborns. Currently, tracheal aspirate (TA) serves as the gold standard collection modality in critically ill newborns, but this method remains invasive. We tested the hypothesis that glutathione status would positively correlate between EBC and TA collections in intubated newborns in the Newborn Intensive Care Unit (NICU). We also hypothesized that these measurements would be associated with alveolar macrophage (AM) glutathione status in the newborn lung. METHODS: Reduced glutathione (rGSH), glutathione disulfide (GSSG), and total GSH (rGSH + (2 X GSSG)) were measured in sequential EBC and TA samples from 26 intubated newborns via high performance liquid chromatography (HPLC). Additionally, AM glutathione was evaluated via immunofluorescence. Pearson's correlation coefficient and associated 95% confidence intervals were used to quantify the associations between raw and urea-corrected concentrations in EBC and TA samples and AM staining. Statistical significance was defined as p ≤ 0.05 using two-tailed tests. The sample size was projected to allow for a correlation coefficient of 0.5, with 0.8 power and alpha of 0.05. RESULTS: EBC was obtainable from intubated newborns without adverse clinical events. EBC samples demonstrated moderate to strong positive correlations with TA samples in terms of rGSH, GSSG and total GSH. Positive correlations between the two sampling sites were observed in both raw and urea-corrected concentrations of rGSH, GSSG and total GSH. AM glutathione staining moderately correlated with GSSG and total GSH status in both the TA and EBC. CONCLUSIONS: GSH status in EBC samples of intubated newborns significantly correlated with the GSH status of the TA sample and was reflective of cellular GSH status in this cohort of neonatal patients. Non-invasive EBC sampling of intubated newborns holds promise for monitoring antioxidant status such as GSH in the premature lung. Further studies are necessary to evaluate the potential relationships between EBC biomarkers in the intubated premature newborn and respiratory morbidities.
Assuntos
Expiração/fisiologia , Glutationa/análise , Glutationa/metabolismo , Intubação Intratraqueal , Pulmão/química , Pulmão/metabolismo , Testes Respiratórios/métodos , Humanos , Recém-Nascido , Intubação Intratraqueal/métodos , Projetos PilotoRESUMO
We previously reported that maternal alcohol use increased the risk of sepsis in premature and term newborns. In the neonatal mouse, fetal ethanol (ETOH) exposure depleted the antioxidant glutathione (GSH), which promoted alveolar macrophage (AM) immunosuppression and respiratory syncytial virus (RSV) infections. In this study, we explored if oral liposomal GSH (LGSH) would attenuate oxidant stress and RSV infections in the ETOH-exposed mouse pups. C57BL/6 female mice were pair-fed a liquid diet with 25% of calories from ethanol or maltose-dextrin. Postnatal day 10 pups were randomized to intranasal saline, LGSH, and RSV. After 48 h, we assessed oxidant stress, AM immunosuppression, pulmonary RSV burden, and acute lung injury. Fetal ETOH exposure increased oxidant stress threefold, lung RSV burden twofold and acute lung injury threefold. AMs were immunosuppressed with decreased RSV clearance. However, LGSH treatments of the ETOH group normalized oxidant stress, AM immune phenotype, the RSV burden, and acute lung injury. These studies suggest that the oxidant stress caused by fetal ETOH exposure impaired AM clearance of infectious agents, thereby increasing the viral infection and acute lung injury. LGSH treatments reversed the oxidative stress and restored AM immune functions, which decreased the RSV infection and subsequent acute lung injury.
RESUMO
In utero alcohol exposure dramatically increases the risk of premature delivery. However, the majority of premature and term newborns exposed to alcohol remain undetected by medical caregivers. There is a desperate need for reliable and accurate biomarkers of alcohol exposure for the term and premature newborn population. The inability to identify the exposed newborn severely limits our understanding of alcohol's pathophysiological effects on developing organs such as the lung. This chapter will review potential advancements in future biomarkers of alcohol exposure for the newborn population. We will discuss alcohol's effects on redox homeostasis and cellular development of the neonatal lung. Finally, we will present the evidence describing in utero alcohol's derangement of innate and adaptive immunity and risk for infectious complications in the lung. Continued investigations into the identification and understanding of the mechanisms of alcohol-induced alterations in the premature lung will advance the care of this vulnerable patient population.
Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol/efeitos adversos , Pneumopatias , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Consumo de Bebidas Alcoólicas/epidemiologia , Feminino , Saúde Global , Humanos , Incidência , Recém-Nascido , Pneumopatias/epidemiologia , Pneumopatias/etiologia , Pneumopatias/fisiopatologia , GravidezRESUMO
BACKGROUND: Maternal smoking in utero has been associated with adverse health outcomes including lower respiratory tract infections in infants and children, but the mechanisms underlying these associations continue to be investigated. We hypothesized that nicotine plays a significant role in mediating the effects of maternal tobacco smoke on the function of the neonatal alveolar macrophage (AM), the resident immune cell in the neonatal lung. METHODS: Primary AMs were isolated at postnatal day 7 from a murine model of in utero nicotine exposure. The murine AM cell line MH-S was used for additional in vitro studies. RESULTS: In utero nicotine increased interleukin-13 and transforming growth factor-ß1 (TGFß1) in the neonatal lung. Nicotine-exposed AMs demonstrated increased TGFß1 and increased markers of alternative activation with diminished phagocytic function. However, AMs from mice deficient in the α7 nicotinic acetylcholine receptor (α7 nAChR) had less TGFß1, reduced alternative activation, and improved phagocytic functioning despite similar in utero nicotine exposure. CONCLUSION: In utero nicotine exposure, mediated in part via the α7 nAChR, may increase the risk of lower respiratory tract infections in neonates by changing the resting state of AM toward alternative activation. These findings have important implications for immune responses in the nicotine-exposed neonatal lung.
Assuntos
Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Alvéolos Pulmonares/citologia , Receptores Nicotínicos/metabolismo , Fumar/efeitos adversos , Animais , Western Blotting , Bungarotoxinas , Linhagem Celular , Feminino , Fibronectinas/metabolismo , Imunofluorescência , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/administração & dosagem , Comunicação Parácrina/efeitos dos fármacos , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7RESUMO
We have previously demonstrated that fetal ethanol exposure deranges the function and viability of the neonatal alveolar macrophage. Although altered differentiation of the alveolar macrophage contributes to pulmonary disease states within the adult lung, the effects of fetal ethanol exposure on the normal differentiation of interstitial to alveolar macrophage in the newborn lung are unknown. In the current study, using a mouse model of fetal ethanol exposure, we hypothesized that altered terminal differentiation of the neonatal interstitial to alveolar macrophage contributes to the observed cellular dysfunction in the ethanol-exposed newborn mouse. Control alveolar macrophage differentiation was characterized by increased expression of CD32/CD11b (P < or = 0.05) and increased in vitro phagocytosis of Staphylococcus aureus (P < or = 0.05) compared with interstitial macrophage. After in utero ethanol exposure, both alveolar and interstitial macrophage lacked the acquisition of CD32/CD11b (P < or = 0.05) and displayed impaired in vitro phagocytosis (P < or = 0.05). Ethanol significantly increased transforming growth factor-beta(1) (TGF-beta(1)) in the bronchoalveolar lavage fluid (P < or = 0.05), as well as in both interstitial and alveolar macrophages (P < or = 0.05). Oxidant stress contributed to the ethanol-induced changes on the interstitial and alveolar cells, since maternal supplementation with the glutathione precursor S-adenosylmethionine during ethanol ingestion normalized CD32/CD11b (P < or = 0.05), phagocytosis (P < or = 0.05), and TGF-beta(1) in the bronchoalveolar lavage fluid and macrophages (P < or = 0.05). Contrary to our hypothesis, fetal ethanol exposure did not solely impair interstitial to alveolar macrophage differentiation. Rather, fetal ethanol exposure impaired both neonatal interstitial and alveolar macrophage phagocytic function and differentiation. Increased oxidant stress and elevated TGF-beta(1) contributed to the impaired differentiation of both interstitial and alveolar macrophage.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Adulto , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos Alveolares/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , GravidezRESUMO
BACKGROUND: Increased systemic oxidant stress contributes to a variety of maternal complications of pregnancy. Although the antioxidant glutathione (GSH) and its oxidized component glutathione disulfide (GSSG) have been demonstrated to be significantly altered in the adult alcoholic, the effects of maternal alcohol use during pregnancy on oxidant stress in the postpartum female remain under investigation. We hypothesized that maternal alcohol use would increase systemic oxidant stress in the pregnant female, evidenced by an oxidized systemic GSH redox potential. METHODS: As a subset analysis of a larger maternal language study, we evaluated the effects of alcohol consumption during pregnancy on the systemic GSH redox status of the postpartum female. Using an extensive maternal questionnaire, postpartum women where queried regarding their alcohol consumption during pregnancy. Any drinking, the occurrence of drinking >3 drinks/occasion, and heavy drinking of >5 drinks/occasion during pregnancy were noted. Using HPLC, maternal plasma samples were analyzed for GSH, oxidized GSSG and the redox potential of the GSH/GSSG antioxidant pair calculated. RESULTS: Maternal alcohol use occurred in 25% (83/321) of our study sample. Two in ten women reported consuming >3 drinks/occasion during pregnancy, while 1 in 10 women reported consuming alcohol at >5 drinks/occasion. Any alcohol use during pregnancy significantly decreased plasma GSH (p < 0.05), while alcohol at >3 drinks/occasion or >5 drinks/occasion significantly decreased plasma GSH concentration (p < 0.05), increased the percent of oxidized GSSG (p < 0.05), and substantially oxidized the plasma GSH redox potential (p < 0.05). CONCLUSIONS: Alcohol use during pregnancy, particularly at levels >3 drinks/occasion, caused significant oxidation of the systemic GSH system in the postpartum women. The clinical ramifications of the observed alcohol-induced oxidation of the GSH redox system on high risk pregnancies or on the exposed offspring require more accurate identification and further investigation.
Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Glutationa/metabolismo , Exposição Materna/efeitos adversos , Estresse Oxidativo/fisiologia , Adolescente , Adulto , Consumo de Bebidas Alcoólicas/sangue , Estudos de Coortes , Feminino , Glutationa/sangue , Humanos , Recém-Nascido , Estudos Longitudinais , Oxirredução , Gravidez , Adulto JovemRESUMO
BACKGROUND: Alcoholic patients have an increased risk of respiratory infections, which is partially due to an impaired immune response of alveolar macrophages. The mechanisms by which alcohol impairs alveolar macrophage function are poorly understood. In this study, we demonstrated in a guinea pig model that chronic ethanol ingestion significantly impaired alveolar macrophage differentiation and function. METHODS: Isolated alveolar macrophages were separated into 4 different subpopulations with varying densities and levels of maturation. RESULTS: Compared to control values, chronic ethanol ingestion decreased the percentage of alveolar macrophages in the mature fractions by approximately 60%. Alveolar macrophage function in each subpopulation was determined by measuring phagocytosis of fluorescein isothiocyanate-labeled Staphylococcus aureus. Alveolar macrophages from ethanol-fed animals had approximately 80% decrease in the phagocytic index. Western blot and immunohistochemical analysis of the differential markers granulocyte/macrophage colony-stimulating factor (GM-CSF) receptor alpha (GM-CSFR-alpha), PU.1, CD11c, and CD11b verified that alcoholic macrophages displayed impaired terminal differentiation. While oral supplementation with the glutathione precursor S-adenosyl-methionine (SAM) did not alter the maturational status of control animals, SAM supplementation shifted the distribution of macrophages to more mature fractions, normalized the phagocytic index; as well as normalized expression of CD11c, CD11b, PU.1, and GM-CSFR-alpha. Chronic ethanol ingestion also impaired the differentiation status of interstitial macrophages which was normalized by SAM supplementation. CONCLUSION: This improvement in the maturational status suggested that ethanol-induced oxidant stress is a central feature in impaired terminal differentiation of macrophages in the interstitial and alveolar space. Therefore, strategies targeting pulmonary oxidant stress may restore macrophage differentiation and function even after chronic ethanol ingestion.
Assuntos
Alcoolismo/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/fisiologia , Animais , Biomarcadores , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Separação Celular , Centrifugação com Gradiente de Concentração , Feminino , Fluoresceína-5-Isotiocianato , Imunofluorescência , Corantes Fluorescentes , Cobaias , Pulmão/citologia , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Staphylococcus aureus/imunologiaRESUMO
BACKGROUND: Sepsis is the most common risk factor associated with acute respiratory distress syndrome (ARDS) and results in a 40-60% mortality rate due to respiratory failure. Furthermore, recent epidemiological studies have demonstrated that a history of alcohol abuse increases the risk of ARDS by 3.6-fold. More recently, group B streptococcus (GBS) infections in nonpregnant adults have been increasing, particularly in alcoholics where there is an increased risk of lobular invasion and mortality. We have shown in an established rat model that chronic ethanol ingestion impaired macrophage internalization of inactivated infectious particles in vitro and enhanced bidirectional protein flux across the alveolar epithelial-endothelial barriers, both of which were attenuated when glutathione precursors were added to the diet. We hypothesized that chronic ethanol ingestion would increase the risk of infection even though GBS is less pathogenic but that dietary N-acetylcysteine (NAC), a glutathione precursor, would improve in vivo clearance of infectious particles and reduce systemic infection. METHODS: After 6 weeks of ethanol feeding, rats were given GBS intratracheally and sacrificed 24 hours later. GBS colony-forming units were counted in the lung, liver, spleen, and bronchoalveolar lavage fluid. Acute lung injury in response to GBS was also assessed. RESULTS: Chronic ethanol exposure decreased GBS clearance from the lung indicating an active lung infection. In addition, increased colonies formed within the liver and spleen indicated that ethanol increased the risk of systemic infection. Ethanol also exacerbated the acute lung injury induced by GBS. NAC supplementation normalized GBS clearance by the lung, prevented the appearance of GBS systemically, and attenuated acute lung injury. CONCLUSIONS: These data suggested that chronic alcohol ingestion increased the susceptibility of the lung to bacterial infections from GBS as well as systemic infections. Furthermore, dietary NAC improved in vivo clearance of GBS particles, attenuated acute lung injury, and disseminated infection.
Assuntos
Acetilcisteína/administração & dosagem , Alcoolismo/metabolismo , Alcoolismo/microbiologia , Modelos Animais de Doenças , Etanol/administração & dosagem , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/fisiologia , Acetilcisteína/farmacocinética , Alcoolismo/dietoterapia , Animais , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/microbiologia , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: The effects of fetal alcohol exposure on the risks of neonatal lung injury and infection remain under investigation. The resident alveolar macrophage (AM) is the first line of immune defense against pulmonary infections. In utero ethanol (ETOH) exposure deranges the function of both premature and term guinea pig AM. We hypothesized that fetal ETOH exposure would increase the risk of pulmonary infection in vivo. METHODS: We developed a novel in vivo model of group B Streptococcus (GBS) pneumonia using our established guinea pig model of fetal ETOH exposure. Timed-pregnant guinea pigs were pair fed +/-ETOH and some were supplemented with the glutathione (GSH) precursor S-adenosyl-methionine (SAM-e). Term pups were given GBS intratracheally while some were pretreated with inhaled GSH prior to the experimental GBS. Neonatal lung and whole blood were evaluated for GBS while isolated AM were evaluated using fluorescent microscopy for GBS phagocytosis. RESULTS: Ethanol-exposed pups demonstrated increased lung infection and sepsis while AM phagocytosis of GBS was deficient compared with control. When SAM-e was added to the maternal diet containing ETOH, neonatal lung and systemic infection from GBS was attenuated and AM phagocytosis was improved. Inhaled GSH therapy prior to GBS similarly protected the ETOH-exposed pup from lung and systemic infection. CONCLUSIONS: In utero ETOH exposure impaired the neonatal lung's defense against experimental GBS, while maintaining GSH availability protected the ETOH-exposed lung. This study suggested that fetal alcohol exposure deranges the neonatal lung's defense against bacterial infection, and support further investigations into the potential therapeutic role for exogenous GSH to augment neonatal AM function.
Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Pneumonia Bacteriana/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae , Animais , Animais Recém-Nascidos , Antídotos/farmacocinética , Antídotos/farmacologia , Peso Corporal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/antagonistas & inibidores , Etanol/antagonistas & inibidores , Feminino , Glutationa/farmacocinética , Glutationa/farmacologia , Cobaias , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Microscopia Confocal , Fagocitose/efeitos dos fármacos , Pneumonia Bacteriana/patologia , Gravidez , Testes de Função Respiratória , S-Adenosilmetionina/administração & dosagem , S-Adenosilmetionina/farmacologia , Sepse/microbiologia , Infecções Estreptocócicas/patologiaRESUMO
BACKGROUND: We previously reported that maternal alcohol use significantly increases the risk of sepsis in premature and term newborns. In the mouse, fetal ethanol exposure results in an immunosuppressed phenotype for the alveolar macrophage (AM) and decreases bacterial phagocytosis. In pregnant mice, ethanol decreased AM zinc homeostasis, which contributed to immunosuppression and impaired AM phagocytosis. In this study, we explored whether ethanol-induced zinc insufficiency extended to the pup AMs and contributed to immunosuppression and exacerbated viral lung infections. METHODS: C57BL/6 female mice were fed a liquid diet with 25% ethanol-derived calories or pair-fed a control diet with 25% of calories as maltose-dextrin. Some pup AMs were treated in vitro with zinc acetate before measuring zinc pools or transporter expression and bacteria phagocytosis. Some dams were fed additional zinc supplements in the ethanol or control diets, and then we assessed pup AM zinc pools, zinc transporters, and the immunosuppressant TGFß1. On postnatal day 10, some pups were given intranasal saline or respiratory syncytial virus (RSV), and then AM RSV phagocytosis and the RSV burden in the airway lining fluid were assessed. RESULTS: Fetal ethanol exposure decreased pup AM zinc pools, zinc transporter expression, and bacterial clearance, but in vitro zinc treatments reversed these alterations. In addition, the expected ethanol-induced increase in TGFß1 and immunosuppression were associated with decreased RSV phagocytosis and exacerbated RSV infections. However, additional maternal zinc supplements blocked the ethanol-induced perturbations in the pup AM zinc homeostasis and TGFß1 immunosuppression, thereby improving RSV phagocytosis and attenuating the RSV burden in the lung. CONCLUSION: These studies suggest that, despite normal maternal dietary zinc intake, in utero alcohol exposure results in zinc insufficiency, which contributes to compromised neonatal AM immune functions, thereby increasing the risk of bacterial and viral infections.
Assuntos
Transtornos do Espectro Alcoólico Fetal/etiologia , Macrófagos Alveolares/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/etiologia , Zinco/deficiência , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Transtornos do Espectro Alcoólico Fetal/imunologia , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Tolerância Imunológica , Macrófagos Alveolares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/fisiopatologiaRESUMO
Bronchopulmonary dysplasia (BPD) is a frequent complication of premature newborns, particularly very low birth-weight babies (<1500 g). Undoubtedly multiple mechanisms contribute to the adverse outcomes associated with BPD but oxidative stress is one causative factor. In this issue of Free Radical Biology and Medicine, Lavoie et al. describe the increased peroxide generation when the multivitamin solution used for nutritional support, total parenteral nutrition (TPN), is exposed to ambient light. Because the premature newborn has limited antioxidant capacity, this increased oxidative burden from the TPN becomes increasingly significant. Infusion of this light-exposed solution in a newborn guinea pig decreased lung tissue vitamin C but not vitamin E. When the multivitamin and lipid solutions were mixed and then exposed to light, alveolarization of the developing lung was decreased. This study by Lavoie et al. highlights simple measures that can potentially decrease the oxidant burden delivered to this vulnerable population and improve alveolarization.
Assuntos
Antioxidantes/metabolismo , Luz , Nutrição Parenteral Total , Alvéolos Pulmonares/metabolismo , Animais , Ácido Ascórbico/metabolismo , Displasia Broncopulmonar/fisiopatologia , Cobaias , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Oxidantes/metabolismo , Alvéolos Pulmonares/irrigação sanguínea , Vitamina E/metabolismoRESUMO
Our understanding of the intrinsic effects of cystic fibrosis (CF) transmembrane conductance regulator (cftr) deletion on resident neonatal alveolar macrophage (AM) remains limited. We previously demonstrated that diminished glutathione (GSH) or excessive AM transforming growth factor beta one (TGFß1) contributes to AM dysfunction in a variety of disease states. In this study, using a gut-corrected cftr neonatal knockout (KO) mouse model and a siRNA-manipulated macrophage-like cell line (THP-1 cell), we hypothesized (1) that cftr mutation alone increases neonatal AM oxidant stress and cellular TGFß1 signaling via altered GSH, thereby impairing cellular function, and (2) that exogenous GSH attenuates AM alterations and dysfunction in the KO AM In neonatal KO mice, the baseline bronchoalveolar lavage fluid demonstrated a near doubling in mixed disulfides (P ≤ 0.05) and oxidized GSSG (P ≤ 0.05) without concurrent inflammation compared to WT littermates. KO AM demonstrated diminished AM thiols (P ≤ 0.05), increased AM mitochondrial ROS (P ≤ 0.05), increased AM TGFß1 (P ≤ 0.05) with increased TGFß1 signaling (P ≤ 0.05), and impaired phagocytosis (P ≤ 0.05). KO AM mitochondrial ROS was modulated by exogenous GSH (P ≤ 0.05). Conversely, TGFß1 was reduced (P ≤ 0.05) and impaired phagocytosis was rescued (P ≤ 0.05) by exogenous GSH in the KO AM These results suggest that an altered neonatal AM phenotype may contribute to the initiation of lung inflammation/infection in the CF lung. Modulation of the AM in the neonatal CF lung may potentially alter progression of disease.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Glutationa/farmacologia , Macrófagos Alveolares/metabolismo , Estresse Oxidativo/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologiaRESUMO
BACKGROUND: We hypothesized that maternal alcohol use occurs in pregnancies that end prematurely and that in utero alcohol exposure is associated with an increased risk of morbidities of premature newborns. METHODS: In an observational study of mothers who delivered very low birth weight newborns (VLBW) ≤1,500 g, maternal alcohol use was determined via a standardized administered questionnaire. We compared the effect of maternal drinking on the odds of developing late-onset sepsis (LOS), bronchopulmonary dysplasia (BPD), death, BPD or death, days on oxygen or any morbidity (either LOS, BPD or death). The effect of drinking amounts (light versus heavy) was also evaluated. RESULTS: A total of 129 subjects who delivered 143 VLBW newborns were enrolled. Approximately 1 in 3 (34%) subjects reported drinking alcohol during the first trimester ("exposed"). Within the exposed group, 15% reported drinking ≥7drinks/week ("heavy") and 85% of the subjects reported drinking <7drinks/week ("light"). When controlling for maternal age, drug or tobacco use during pregnancy and neonatal gestational age, any drinking increased the odds of BPD or death and any morbidity. Furthermore, light or heavy drinking increased the odds of BPD or death and any morbidity, whereas heavy drinking increased the odds of LOS. CONCLUSIONS: In utero alcohol exposure during the first trimester occurred in 34% of VLBW newborns. Maternal drinking in the first trimester was associated with significantly increased odds of neonatal morbidity. Further studies are warranted to determine the full effect of in utero alcohol exposure on the adverse outcomes of VLBW premature newborns.