Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(7): 1558-1566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308520

RESUMO

The excitation-inhibition imbalance manifesting as epileptic activities in Alzheimer's disease is gaining more and more attention, and several potentially involved cellular and molecular pathways are currently under investigation. Based on in vitro studies, dopamine D1-type receptors in the anterior cingulate cortex and the hippocampus have been proposed to participate in this peculiar co-morbidity in mouse models of amyloidosis. Here, we tested the implication of dopaminergic transmission in vivo in the Tg2576 mouse model of Alzheimer's disease by monitoring epileptic activities via intracranial EEG before and after treatment with dopamine antagonists. Our results show that neither the D1-like dopamine receptor antagonist SCH23390 nor the D2-like dopamine receptor antagonist haloperidol reduces the frequency of epileptic activities. While requiring further investigation, our results indicate that on a systemic level, dopamine receptors are not significantly contributing to epilepsy observed in vivo in this mouse model of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Amiloidose , Epilepsia , Camundongos , Animais , Antagonistas de Dopamina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Receptores de Dopamina D2/metabolismo , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Receptores de Dopamina D1/metabolismo , Epilepsia/tratamento farmacológico , Modelos Animais de Doenças , Amiloidose/tratamento farmacológico
2.
Neurobiol Aging ; 123: 35-48, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634385

RESUMO

The link between Alzheimer's disease (AD) and network hypersynchrony - manifesting as epileptic activities - received considerable attention in the past decade. However, several questions remain unanswered as to its mechanistic underpinnings. Therefore, our objectives were (1) to better characterise epileptic events in the Tg2576 mouse model throughout the sleep-wake cycle and disease progression via electrophysiological recordings and (2) to explore the involvement of noradrenergic transmission in this pathological hypersynchrony. Over and above confirming the previously described early presence and predominance of epileptic events during rapid-eye-movement (REM) sleep, we also show that these events do not worsen with age and are highly phase-locked to the section of the theta cycle during REM sleep where hippocampal pyramidal cells reach their highest firing probability. Finally, we reveal an antiepileptic mechanism of noradrenergic transmission via α1-adrenoreceptors that could explain the intriguing distribution of epileptic events over the sleep-wake cycle in this model, with potential therapeutic implications in the treatment of the epileptic events occurring in many AD patients.


Assuntos
Doença de Alzheimer , Epilepsia , Camundongos , Animais , Doença de Alzheimer/patologia , Camundongos Transgênicos , Sono/fisiologia , Modelos Animais de Doenças , Sono REM
3.
Neuropharmacology ; 241: 109730, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37758019

RESUMO

Type 2 diabetes and obesity characterized by hallmarks of insulin resistance along with an imbalance in brain oxidative metabolism would impair intrinsic capacities (ICs), a new concept for assessing mental and physical functioning. Here, we explored the impact of physical activity on antioxidant responses and oxidative metabolism in discrete brain areas of HFD or standard diet (STD) fed mice but also its consequences on specific domains of ICs. 6-week-old Swiss male mice were exposed to a STD or a HFD for 16 weeks and half of the mice in each group had access to an activity wheel and the other half did not. As expected HFD mice displayed peripheral insulin resistance but also a persistent inhibition of aconitase activity in cortices revealing an increase in mitochondrial reactive oxygen species (ROS) production. Animals with access to the running wheel displayed an improvement of insulin sensitivity regardless of the diet factor whereas ROS production remained impaired. Moreover, although the access of the running wheel did not influence mitochondrial biomass, in the oxidative metabolism area, it produced a slight decrease in brain SOD1 and catalase expression notably in HFD fed mice. At the behavioural level, physical exercise produced anxiolytic/antidepressant-like responses and improved motor coordination in both STD and HFD fed mice. However, this non-pharmacological intervention failed to enhance cognitive performance. These findings paint a contrasting landscape about physical exercise as a non-pharmacological intervention for positively orienting the aging trajectory.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Masculino , Camundongos , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Espécies Reativas de Oxigênio , Condicionamento Físico Animal/fisiologia
4.
eNeuro ; 10(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863658

RESUMO

Mitochondria are integrative hubs central to cellular adaptive pathways. Such pathways are critical in highly differentiated postmitotic neurons, the plasticity of which sustains brain function. Consequently, defects in mitochondria and in their dynamics appear instrumental in neurodegenerative diseases and may also participate in cognitive impairments. To directly test this hypothesis, we analyzed cognitive performances in a mouse mitochondria-based disease model, because of haploinsufficiency in the mitochondrial optic atrophy type 1 (OPA1) protein involved in mitochondrial dynamics. In males, we evaluated adult hippocampal neurogenesis parameters using immunohistochemistry. We performed a battery of tests to assess basal behavioral characteristics and cognitive performances, and tested putative treatments. While in dominant optic atrophy (DOA) mouse models, the known main symptoms are late onset visual deficits, we discovered early impairments in hippocampus-dependent spatial memory attributable to defects in adult neurogenesis. Moreover, less connected adult-born hippocampal neurons showed a decrease in mitochondrial content. Remarkably, voluntary exercise or pharmacological treatment targeting mitochondrial dynamics restored spatial memory in DOA mice. Altogether, our study identifies a crucial role for OPA1-dependent mitochondrial functions in adult neurogenesis, and thus in hippocampal-dependent cognitive functions. More generally, our findings show that adult neurogenesis is highly sensitive to mild mitochondrial defects, generating impairments in spatial memory that can be detected at an early stage and counterbalanced by physical exercise and pharmacological targeting of mitochondrial dynamics. Thus, amplification of mitochondrial function at an early stage appears beneficial for late-onset neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Atrofia Óptica Autossômica Dominante , Masculino , Camundongos , Animais , Memória Espacial , Mitocôndrias/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Atrofia Óptica Autossômica Dominante/metabolismo , Hipocampo/metabolismo , Doenças Neurodegenerativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA