Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 81: 136-147, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30975316

RESUMO

Potassium tungstophosphate is supported on BEA zeolite by in situ synthesis for glyphosate removal. Spectroscopic measurements identified hydrogen bonding as a primal interaction of potassium salt and BEA zeolite. Composites are evaluated for glyphosate herbicide removal and adsorption process is analyzed using two isotherm models. Obtained adsorption capacities for all prepared composites lay between 45.2 and 92.2 mg of glyphosate per gram of investigated composite. Suspension acidity revealed that glyphosate is adsorbed mainly in the zwitter-ion form at the composite surface while the amount of potassium salt in the composites is crucial for the adsorption application. Exceptional adsorption behavior is postulated to come from a high degree of homogeneity among surface active sites which is confirmed by different experimental methods. Temperature programmed desorption of glyphosate coupled with mass spectrometer detected one broad, high-temperature peak which represents overlapped desorption processes from active sights of similar strength. Introduction of potassium tungstophosphate affects active sites present in BEA zeolite for glyphosate desorption and significantly increases the amount of adsorbed pesticide in comparison to BEA zeolite. Supporting of potassium tungstophosphate on BEA zeolite via in situ synthesis procedure enables the formation of highly efficient adsorbents and revealed their perspective environmental application.


Assuntos
Modelos Químicos , Praguicidas/química , Potássio/química , Zeolitas/química , Adsorção , Glicina/análogos & derivados , Glifosato
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123772, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128326

RESUMO

Reuse and/or recycling of spent adsorbents is taking a central role in modern thinking and catalyzed carbonization is the way forward. Herein we explore the carbonization of adsorbed acetamiprid, in an inert atmosphere, as a way of recycling and producing nitrogen-rich carbon material for potential use in supercapacitors. Added value material and the reuse of the adsorbent were achieved by carbonization at 700 °C under argon. The formation of a nitrogen-doped carbon layer as an active material on the adsorbent, bonded through a C-Si linkage, has been conclusively verified through elemental composition quantification using XPS and EDX measurements. Two-stage catalytic decomposition and condensation of the adsorbed pesticide is followed by TGA and TPD-MS. Attained carbon-based materials give stable Faradaic capacitance with a slight dependency on the number of adsorbing cycles. Capacitance calculated with respect to the adlayer carbon material reaches values as high as 610 F g-1. Galvanostatic Charge/Discharge measurement confirmed the stability of explored materials with a slight increase in capacitance over 1000 cycles. The presented results envisage electroactive materials preparation from environmental pollutants, adding value to spent adsorbents.

3.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571062

RESUMO

Electrochemical crosslinking of alginate strands by in situ iron oxidation was explored using a potentiostatic regime. Carbon-based materials co-doped with iron, nitrogen, and/or sulfur were prepared via electrolyte composition variation with a nitrogen-rich compound (rivanol) or through post-treatments with sodium sulfide. Nanometer-sized iron particles were confirmed by transmission and field emission scanning electron microscopy in all samples as a consequence of the homogeneous dispersion of iron in the alginate scaffold and its concomitant growth-limiting effect of alginate chains. Raman spectra confirmed a rise in structural disorder with rivanol/Na2S treatment, which points to more defect sites and edges known to be active sites for oxygen reduction. Fourier transform infrared (FTIR) spectra confirmed the presence of different iron, nitrogen, and sulfur species, with a marked difference between Na2S treated/untreated samples. The most positive onset potential (-0.26 V vs. saturated calomel electrode, SCE) was evidenced for the sample co-doped with N, S, and Fe, surpassing the activity of those with single and/or double doping. The mechanism of oxygen reduction in 0.1 M KOH was dominated by the 2e- reduction pathway at low overpotentials and shifted towards complete 4e- reduction at the most negative explored values. The presented results put forward electrochemically formed alginate gels functionalized by homogeneously dispersed multivalent cations as an excellent starting point in nanomaterial design and engineering.

4.
Polymers (Basel) ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38006074

RESUMO

The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and nanoscale in nature, while Raman spectroscopy revealed the ZnO phase beneath the carbon matrix. Adsorption of pesticide, dye, and metal cation on C-(MOF-5/PANI) composites in aqueous solutions was evaluated and compared with the behavior of the precursor components, carbonized MOF-5 (cMOF), and carbonized PANIs. A lower MOF-5 content in the precursor, a higher specific surface area, and the pore volume of the composites led to improved adsorption performance for acetamiprid (124 mg/g) and Methylene Blue (135 mg/g). The presence of O/N functional groups in composites is essential for the adsorption of nitrogen-rich pollutants through hydrogen bonding with an estimated monolayer capacity twice as high as that of cMOF. The proton exchange accompanying Cd2+ retention was associated with the Zn/Cd ion exchange, and the highest capacity (9.8 mg/g) was observed for the composite synthesized from the precursor with a high MOF-5 content. The multifunctionality of composites was evidenced in mixtures of pollutants where noticeably better performance for Cd2+ removal was found for the composite compared to cMOF. Competitive binding between three pollutants favored the adsorption of pesticide and dye, thereby hindering to some extent the ion exchange necessary for the removal of metal cations. The results emphasize the importance of the PANI form and MOF-5/PANI weight ratio in precursors for the development of surface, porosity, and active sites in C-(MOF-5/PANI) composites, thus guiding their environmental efficiency. The study also demonstrated that C-(MOF-5/PANI) composites retained studied pollutants much better than carbonized precursor PANIs and showed comparable or better adsorption ability than cMOF.

5.
Materials (Basel) ; 16(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770026

RESUMO

Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal-organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to 609 m2 g-1), electrical conductivity (up to 0.24 S cm-1), and specific capacitance, Cspec, (up to 238.2 F g-1 at 10 mV s-1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1-10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g-1 and 341 F g-1, respectively. The developed composites represent promising electrode materials for supercapacitors.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122987, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327500

RESUMO

Herein we unequivocally identify the mechanism of zeolite-catalysed thermal degradation of pesticide, employing Fourier-transform infrared spectroscopy (FTIR), Raman and mass spectrometry following temperature decomposition (TPDe/MS). We demonstrate that Y zeolite can effectively adsorb a significant amount of acetamiprid both in a single trial (168 mg/g) and in 10 cycles (1249 mg/g) with intermittent thermal regeneration at 300 °C. Sectional vibrational analysis of acetamiprid two-stage thermal degradation is performed for pristine and supported pesticide. The acetamiprid Raman spectral changes appear at 200 °C, while partial carbonization occurs at 250 °C. The gradual disappearance of the FTIR bands of acetamiprid is seen up to 270 °C when two Raman signature bands for carbonised material emerged. The TPDe/MS profiles reveal the evolution of mass fragments - in the first step, cleavage of the CC bond occurs between the aromatic core of the molecule and its tail-end, followed by cleavage of the CN bond. The mechanism of adsorbed acetamiprid degradation follows the same step, at significantly lower temperatures, as the process is catalysed by the interaction of acetamiprid nitrogens and zeolite support. Reduced temperature degradation allows for a quick recovery process that leaves 65% efficacy after 10 cycles. After numerous cycles of recovery, a subsequent one-time heat treatment at 700 °C completely restores initial efficacy. The efficient adsorption, novel details on degradation mechanism and ease of regeneration procedure place the Y zeolite at the forefront of future all-encompassing environmental solutions.


Assuntos
Praguicidas , Zeolitas , Zeolitas/química , Neonicotinoides , Temperatura
7.
J Funct Biomater ; 14(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36976097

RESUMO

Acridine and its derivatives (9-chloroacridine and 9-aminoacridine) are investigated here, supported on FAU type zeolite Y, as a delivery system of anticancer agents. FTIR/Raman spectroscopy and electron microscopy revealed successful drug loading on the zeolite surface, while spectrofluorimetry was employed for drug quantification. The effects of the tested compounds on cell viability were evaluated using in vitro methylthiazol-tetrazolium (MTT) colorimetric technique against human colorectal carcinoma (cell line HCT-116) and MRC-5 fibroblasts. Zeolite structure remained unchanged during homogeneous drug impregnation with achieved drug loadings in the 18-21 mg/g range. The highest drug release, in the µM concentration range, with favourable kinetics was established for zeolite-supported 9-aminoacridine. The acridine delivery via zeolite carrier is viewed in terms of solvation energy and zeolite adsorption sites. The cytotoxic effect of supported acridines on HCT-116 cells reveals that the zeolite carrier improves toxicity, while the highest efficiency is displayed by zeolite-impregnated 9-aminoacridine. The 9-aminoacridine delivery via zeolite carrier favours healthy tissue preservation while accompanying increased toxicity toward cancer cells. Cytotoxicity results are well correlated with theoretical modelling and release study, providing promising results for applicative purposes.

8.
Polymers (Basel) ; 12(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861654

RESUMO

Nitrogen-containing carbon derivatives were prepared by the carbonization of poly(aniline-co-p-phenylenediamine) cryogels in inert atmosphere. Lower aniline fraction in the comonomer mixture used for preparation of the cryogels led to the decrease of their thermal stability, a consequent increase of carbonization degree, and less defective structure of carbonized materials. The resulting carbonaceous products had up to 4 orders of magnitude higher specific surface area than their respective cryogel precursors, the highest value 931 m2 g-1 being achieved for carbonized poly(p-phenylenediamine) cryogel. Electrochemical characterization of the carbon derivatives demonstrated that the decrease in aniline concentration during the synthesis of the precursor cryogels led to higher gravimetric capacitance for corresponding carbonized materials. These materials can potentially be used for energy storage applications.

9.
J Colloid Interface Sci ; 551: 184-194, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078100

RESUMO

By using methyl orange template, polypyrrole nanotubes were obtained by the oxidative polymerization of pyrrole. The nanotubes were carbonized in inert atmosphere to nitrogen-enriched carbon nanotubes. These were subsequently coated with 20 wt% of polypyrrole prepared in the absence or the presence of anionic dyes (methyl orange or Acid Blue 25). The morphology of all the samples was examined by the electron microscopies, FTIR and Raman spectroscopies. Moreover, X-ray photoelectron spectroscopy and elemental analysis were used to prove the chemical structure and the successful coating process. Electron paramagnetic resonance analysis was used to calculate the spin concentrations. Significant impact of coating method is evidenced with neat polypyrrole coating providing a two-fold capacitance increase compared to uncoated nanotubes, while coating in the presence of Acid Blue 25 decreasing it slightly. With respect to oxygen reduction reaction, coatings irreversibly transformed in the first few cycles in the presence of the products of O2 reduction, presumably hydrogen peroxide, altering the oxygen reduction mechanism. This transformation allows the tailoring of the polymeric shell, over ORR active carbonaceous core, and tuning of the catalyst selectivity and optimization of materials performance for a given application - from alkaline fuel cells to hydrogen peroxide generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA