Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Musculoskelet Radiol ; 28(5): 594-609, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39406222

RESUMO

Body composition is now recognized to have a major impact on health and disease. Imaging enables its analysis in an objective and quantitative way through diverse techniques such as dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging, and ultrasonography. This review article first surveys the methodological aspects underpinning the use of these modalities to assess body composition, highlighting their strengths and limitations as well as the set of parameters that they measure and their clinical relevance. It then provides an update on the main applications of body composition imaging in current practice, with a focus on sarcopenia, obesity, lipodystrophies, cancer, and critical care. We conclude by considering the emerging role of artificial intelligence in the analysis of body composition, enabling the extraction of numerous metrics with the potential to refine prognostication and management across a number of pathologies, paving the way toward personalized medicine.


Assuntos
Composição Corporal , Humanos , Diagnóstico por Imagem/métodos
2.
Radiol Med ; 129(8): 1224-1240, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39080226

RESUMO

Osteoporosis is the most prevalent skeletal disorder, a condition that is associated with significant social and healthcare burden. In the elderly, osteoporosis is commonly associated with sarcopenia, further increasing the risk of fracture. Several imaging techniques are available for a non-invasive evaluation of osteoporosis and sarcopenia. This review focuses on dual-energy X-ray absorptiometry (DXA), as this technique offers the possibility to evaluate bone mineral density and body composition parameters with good precision and accuracy. DXA is also able to evaluate the amount of aortic calcification for cardiovascular risk estimation. Additionally, new DXA-based parameters have been developed in recent years to further refine fracture risk estimation, such as the Trabecular Bone Score and the Bone Strain Index. Finally, we describe the recent advances of a newly developed ultrasound-based technology known as Radiofrequency Echographic Multi-Spectrometry, which represent the latest non-ionizing approach for osteoporosis evaluation at central sites.


Assuntos
Absorciometria de Fóton , Densidade Óssea , Osteoporose , Humanos , Absorciometria de Fóton/métodos , Osteoporose/diagnóstico por imagem , Sarcopenia/diagnóstico por imagem , Composição Corporal , Ultrassonografia/métodos , Medição de Risco
3.
Br J Radiol ; 96(1150): 20221016, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37195008

RESUMO

High-resolution peripheral quantitative CT (HR-pQCT) is a low-dose three-dimensional imaging technique, originally developed for in vivo assessment of bone microarchitecture at the distal radius and tibia in osteoporosis. HR-pQCT has the ability to discriminate trabecular and cortical bone compartments, providing densitometric and structural parameters. At present, HR-pQCT is mostly used in research settings, despite evidence showing that it may be a valuable tool in osteoporosis and other diseases. This review summarizes the main applications of HR-pQCT and addresses the limitations that currently prevent its integration into routine clinical practice. In particular, the focus is on the use of HR-pQCT in primary and secondary osteoporosis, chronic kidney disease (CKD), endocrine disorders affecting bone, and rare diseases. A section on novel potential applications of HR-pQCT is also present, including assessment of rheumatic diseases, knee osteoarthritis, distal radius/scaphoid fractures, vascular calcifications, effect of medications, and skeletal muscle. The reviewed literature seems to suggest that a more widespread implementation of HR-pQCT in clinical practice would offer notable opportunities. For instance, HR-pQCT can improve the prediction of incident fractures beyond areal bone mineral density provided by dual-energy X-ray absorptiometry. In addition, HR-pQCT may be used for the monitoring of anti-osteoporotic therapy or for the assessment of mineral and bone disorder associated with CKD. Nevertheless, several obstacles currently prevent a broader use of HR-pQCT and would need to be targeted, such as the small number of installed machines worldwide, the uncertain cost-effectiveness, the need for improved reproducibility, and the limited availability of reference normative data sets.


Assuntos
Osteoporose , Insuficiência Renal Crônica , Fraturas do Punho , Humanos , Reprodutibilidade dos Testes , Osteoporose/diagnóstico por imagem , Densidade Óssea/fisiologia , Absorciometria de Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Tíbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA