Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Plant Cell ; 34(9): 3383-3399, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35708659

RESUMO

Photosynthesis and the biosynthesis of many important metabolites occur in chloroplasts. In these semi-autonomous organelles, the chloroplast genome encodes approximately 100 proteins. The remaining chloroplast proteins, close to 3,000, are encoded by nuclear genes whose products are translated in the cytosol and imported into chloroplasts. However, there is still no consensus on the composition of the protein import machinery including its motor proteins and on how newly imported chloroplast proteins are refolded. In this study, we have examined the function of orf2971, the largest chloroplast gene of Chlamydomonas reinhardtii. The depletion of Orf2971 causes the accumulation of protein precursors, partial proteolysis and aggregation of proteins, increased expression of chaperones and proteases, and autophagy. Orf2971 interacts with the TIC (translocon at the inner chloroplast envelope) complex, catalyzes ATP (adenosine triphosphate) hydrolysis, and associates with chaperones and chaperonins. We propose that Orf2971 is intimately connected to the protein import machinery and plays an important role in chloroplast protein quality control.


Assuntos
Cloroplastos , Proteínas de Plantas , Núcleo Celular , Proteínas de Cloroplastos , Chaperonas Moleculares , Transporte Proteico
2.
Mol Cell Proteomics ; 22(7): 100582, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37225018

RESUMO

Carbon metabolism is central to photosynthetic organisms and involves the coordinated operation and regulation of numerous proteins. In cyanobacteria, proteins involved in carbon metabolism are regulated by multiple regulators including the RNA polymerase sigma factor SigE, the histidine kinases Hik8, Hik31 and its plasmid-borne paralog Slr6041, and the response regulator Rre37. To understand the specificity and the cross-talk of such regulations, we simultaneously and quantitatively compared the proteomes of the gene knockout mutants for the regulators. A number of proteins showing differential expression in one or more mutants were identified, including four proteins that are unanimously upregulated or downregulated in all five mutants. These represent the important nodes of the intricate and elegant regulatory network for carbon metabolism. Moreover, serine phosphorylation of PII, a key signaling protein sensing and regulating in vivo carbon/nitrogen (C/N) homeostasis through reversible phosphorylation, is massively increased with a concomitant significant decrease in glycogen content only in the hik8-knockout mutant, which also displays impaired dark viability. An unphosphorylatable PII S49A substitution restored the glycogen content and rescued the dark viability of the mutant. Together, our study not only establishes the quantitative relationship between the targets and the corresponding regulators and elucidated their specificity and cross-talk but also unveils that Hik8 regulates glycogen accumulation through negative regulation of PII phosphorylation, providing the first line of evidence that links the two-component system with PII-mediated signal transduction and implicates them in the regulation of carbon metabolism.


Assuntos
Carbono , Synechocystis , Fosforilação , Carbono/metabolismo , Proteômica , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicogênio/metabolismo , Nitrogênio , Regulação Bacteriana da Expressão Gênica
3.
Proteomics ; : e2300222, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581091

RESUMO

The group 2 σ factor for RNA polymerase SigE plays important role in regulating central carbon metabolism in cyanobacteria. However, the regulation of SigE for these pathways at a proteome level remains unknown. Using a sigE-deficient strain (ΔsigE) of Synechocystis sp. PCC 6803 and quantitative proteomics, we found that SigE depletion induces differential protein expression for sugar catabolic pathways including glycolysis, oxidative pentose phosphate (OPP) pathway, and glycogen catabolism. Two glycogen debranching enzyme homologues Slr1857 and Slr0237 are found differentially expressed in ΔsigE. Glycogen determination indicated that Δslr0237 accumulated glycogen under photomixotrophic condition but was unable to utilize these reserves in the dark, whereas Δslr1857 accumulates and utilizes glycogen in a similar way as the WT strain does in the same condition. These results suggest that Slr0237 plays the major role as the glycogen debranching enzyme in Synechocystis.

4.
New Phytol ; 243(3): 936-950, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831647

RESUMO

Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.


Assuntos
Proteínas de Bactérias , Carbono , Glicosiltransferases , Synechocystis , Uridina Difosfato N-Acetilglicosamina , Synechocystis/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Carbono/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo , Regulação Bacteriana da Expressão Gênica , Deleção de Genes
5.
Mol Cell Proteomics ; 21(12): 100440, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356940

RESUMO

Ascorbate peroxidase (APEX)-based proximity labeling coupled with mass spectrometry has a great potential for spatiotemporal identification of proteins proximal to a protein complex of interest. Using this approach is feasible to define the proteome neighborhood of important protein complexes in a popular photosynthetic model cyanobacterium Synechocystis sp. PCC6803 (hereafter named as Synechocystis). To this end, we developed a robust workflow for APEX2-based proximity labeling in Synechocystis and used the workflow to identify proteins proximal to the photosystem II (PS II) oxygen evolution complex (OEC) through fusion APEX2 with a luminal OEC subunit, PsbO. In total, 38 integral membrane proteins (IMPs) and 93 luminal proteins were identified as proximal to the OEC. A significant portion of these proteins are involved in PS II assembly, maturation, and repair, while the majority of the rest were not previously implicated with PS II. The IMPs include subunits of PS II and cytochrome b6/f, but not of photosystem I (except for PsaL) and ATP synthases, suggesting that the latter two complexes are spatially separated from the OEC with a distance longer than the APEX2 labeling radius. Besides, the topologies of six IMPs were successfully predicted because their lumen-facing regions exclusively contain potential APEX2 labeling sites. The luminal proteins include 66 proteins with a predicted signal peptide and 57 proteins localized also in periplasm, providing important targets to study the regulation and selectivity of protein translocation. Together, we not only developed a robust workflow for the application of APEX2-based proximity labeling in Synechocystis and showcased the feasibility to define the neighborhood proteome of an important protein complex with a short radius but also discovered a set of the proteins that potentially interact with and regulate PS II structure and function.


Assuntos
Complexo de Proteína do Fotossistema II , Synechocystis , Complexo de Proteína do Fotossistema II/metabolismo , Proteoma/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Synechocystis/metabolismo
6.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732914

RESUMO

Flexible sensors have gained popularity in recent years. This study proposes a novel structure of a resistive four-channel tactile sensor capable of distinguishing the magnitude and direction of normal forces acting on its sensing surface. The sensor uses EcoflexTM00-30 as the substrate and EGaIn alloy as the conductive filler, featuring four mutually perpendicular and curved channels to enhance the sensor's dynamic responsiveness. Experiments and simulations show that the sensor has a large dynamic range (31.25-100 mΩ), high precision (deviation of repeated pressing below 0.1%), linearity (R2 above 0.97), fast response/recovery time (0.2 s/0.15 s), and robust stability (with fluctuations below 0.9%). This work uses an underactuated robotic hand equipped with a four-channel tactile sensor to grasp various objects. The sensor data collected effectively predicts the shapes of the objects grasped. Furthermore, the four-channel tactile sensor proposed in this work may be employed in smart wearables, medical diagnostics, and other industries.

7.
J Proteome Res ; 22(4): 1255-1269, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36930737

RESUMO

Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stress-induced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold-induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiency- and nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments.


Assuntos
Deficiências de Ferro , Synechocystis , Humanos , Proteoma/genética , Proteoma/metabolismo , Estresse Fisiológico , Synechocystis/genética , Synechocystis/metabolismo , Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
J Am Chem Soc ; 145(8): 4545-4552, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36794794

RESUMO

On-surface acetylenic homocoupling has been proposed to construct carbon nanostructures featuring sp hybridization. However, the efficiency of linear acetylenic coupling is far from satisfactory, often resulting in undesired enyne products or cyclotrimerization products due to the lack of strategies to enhance chemical selectivity. Herein, we inspect the acetylenic homocoupling reaction of polarized terminal alkynes (TAs) on Au(111) with bond-resolved scanning probe microscopy. The replacement of benzene with pyridine moieties significantly prohibits the cyclotrimerization pathway and facilitates the linear coupling to produce well-aligned N-doped graphdiyne nanowires. Combined with density functional theory calculations, we reveal that the pyridinic nitrogen modification substantially differentiates the coupling motifs at the initial C-C coupling stage (head-to-head vs head-to-tail), which is decisive for the preference of linear coupling over cyclotrimerization.

9.
New Phytol ; 240(2): 676-693, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37545368

RESUMO

Reactive carbonyl species (RCS) derived from lipid peroxides can act as critical damage or signaling mediators downstream of reactive oxygen species by modifying target proteins. However, their biological effects and underlying mechanisms remain largely unknown in plants. Here, we have uncovered the mechanism by which the RCS 4-hydroxy-(E)-2-nonenal (HNE) participates in photosystem II (PSII) repair cycle of chloroplasts, a crucial process for maintaining PSII activity under high and changing light conditions. High Light Sensitive 1 (HLT1) is a potential NADPH-dependent reductase in chloroplasts. Deficiency of HLT1 had no impact on the growth of Arabidopsis plants under normal light conditions but increased sensitivity to high light, which resulted from a defective PSII repair cycle. In hlt1 plants, the accumulation of HNE-modified D1 subunit of PSII was observed, which did not affect D1 degradation but hampered the dimerization of repaired PSII monomers and reassembly of PSII supercomplexes on grana stacks. HLT1 is conserved in all photosynthetic organisms and has functions in overall growth and plant fitness in both Arabidopsis and rice under naturally challenging field conditions. Our work provides the mechanistic basis underlying RCS scavenging in light acclimation and suggests a potential strategy to improve plant productivity by manipulating RCS signaling in chloroplasts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Aclimatação , Luz
10.
Exp Cell Res ; 421(1): 113374, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206825

RESUMO

Renal fibrosis is a global health concern with limited curative treatment. Canonical transient receptor potential channel 6 (TRPC6), a nonselective cation channel, has been shown to regulate the renal fibrosis in murine models. However, the molecular mechanism is unclear. Fibroblast-myofibroblast transdifferentiation is one of the critical steps in the progression of renal fibrosis. In the present study, we demonstrate that transforming growth factor (TGF)-ß1 exposure significantly increases the TRPC6 expression in renal interstitial fibroblast NRK-49F cells. Pharmacological inhibition of TRPC6 and knockdown of Trpc6 by siRNA alleviate TGF-ß1-increased expression levels of α-smooth muscle actin (α-SMA) and collagen I, two key markers of myofibroblasts. Although direct activation of TRPC6 by 1-oleoyl-2-acetyl-sn-glycerol (OAG) does not affect the expression of α-SMA and collagen I, OAG potentiates TGF-ß1-induced fibroblast-myofibroblast transdifferentiation. Further study demonstrates that TGF-ß1 exposure increases the phosphorylation level of p38 and Yes-associated protein (YAP) translocation into the nuclei. Inhibition of p38 and YAP decreases TGF-ß1-enhanced TRPC6 and α-SMA expression. In conclusion, we demonstrate that TRPC6 is a key regulator of TGF-ß1-induced fibroblast-myofibroblast transdifferentiation and provides the mechanism of how TGF-ß1 exposure regulates TRPC6 expression in NRK-49F fibroblasts.


Assuntos
Transdiferenciação Celular , Nefropatias , Canal de Cátion TRPC6 , Animais , Camundongos , Actinas/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/fisiologia , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibrose , Nefropatias/metabolismo , Miofibroblastos/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/uso terapêutico , Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/genética , Proteínas de Sinalização YAP , Ratos , Modelos Animais de Doenças
11.
Mol Cell Proteomics ; 20: 100162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34655801

RESUMO

Light is essential for photosynthetic organisms and is involved in the regulation of protein synthesis and degradation. The significance of light-regulated protein degradation is exemplified by the well-established light-induced degradation and repair of the photosystem II reaction center D1 protein in higher plants and cyanobacteria. However, systematic studies of light-regulated protein degradation events in photosynthetic organisms are lacking. Thus, we conducted a large-scale survey of protein degradation under light or dark conditions in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis) using the isobaric labeling-based quantitative proteomics technique. The results revealed that 79 proteins showed light-regulated degradation, including proteins involved in photosystem II structure or function, quinone binding, and NADH dehydrogenase. Among these, 25 proteins were strongly dependent on light for degradation. Moreover, the light-dependent degradation of several proteins was sensitive to photosynthetic electron transport inhibitors (DCMU and DBMIB), suggesting that they are influenced by the redox state of the plastoquinone (PQ) pool. Together, our study comprehensively cataloged light-regulated protein degradation events, and the results serve as an important resource for future studies aimed at understanding light-regulated processes and protein quality control mechanisms in cyanobacteria.


Assuntos
Proteínas de Bactérias/efeitos da radiação , Luz , Synechocystis , Proteólise
12.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4137-4146, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802782

RESUMO

Previous studies have shown that high blood glucose-induced chronic microinflammation can cause inflammatory podocyte injury in patients with diabetic kidney disease(DKD). Therein, necroptosis is a new form of podocyte death that is closely associated with renal fibrosis(RF). To explore the effects and mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese herbal medicine Abelmoschus manihot for treating kidney diseases, on podocyte necroptosis and RF in DKD, and to further reveal its scientific connotation with multi-pathway and multi-target, the authors randomly divided all rats into four groups: a namely normal group, a model group, a TFA group and a rapamycin(RAP) group. After the modified DKD rat models were successfully established, four group rats were given double-distilled water, TFA suspension and RAP suspension, respectively by gavage every day. At the end of the 4th week of drug treatment, all rats were sacrificed, and the samples of their urine, blood and kidneys were collected. And then, the various indicators related to podocyte necroptosis and RF in the DKD model rats were observed, detected and analyzed, respectively. The results indicated that, general condition, body weight(BW), serum creatinine(Scr), urinary albumin(UAlb), and kidney hypertrophy index(KHI) in these modified DKD model rats were both improved by TFA and RAP. Indicators of RF, including glomerular histomorphological characteristics, fibronectin(FN) and collagen type Ⅰ(collagen Ⅰ) staining extent in glomeruli, as well as the protein expression levels of FN, collagen Ⅰ, transforming growth factor-ß1(TGF-ß1) and Smad2/3 in the kidneys were improved respectively by TFA and RAP. Podocyte damage, including foot process form and the protein expression levels of podocin and CD2AP in the kidneys was improved by TFA and RAP. In addition, tumor necrosis factor-α(TNF-α)-mediated podocyte necroptosis in the kidneys, including the morphological characteristics of podocyte necroptosis, the extent and levels of the protein expression of TNF-α and phosphorylated mixed lineage kinase domain like pseudokinase(p-MLKL) was improved respectively by TFA and RAP. Among them, RAP had the better effect on p-MLKL. More importantly, the activation of the receptor interacting serine/threonine protein kinase 1(RIPK1)/RIPK3/MLKL signaling axis in the kidneys, including the expression levels of its key signaling molecules, such as phosphorylated receptor interacting serine/threonine protein kinase 1(p-RIPK1), p-RIPK3, p-MLKL and cysteinyl aspartate specific proteinase-8(caspase-8) was improved respectively by TFA and RAP. Among them, the effect of TFA on p-RIPK1 was superior. On the whole, in this study, the authors demonstrated that TFA alleviates podocyte necroptosis and RF in DKD through inhibiting the activation of the TNF-α-mediated RIPK1/RIPK3/MLKL signaling axis in diabetic kidneys. The authors' findings provide new pharmacological evidence to reveal the scientific connotation of TFA in treating RF in DKD in more depth.


Assuntos
Abelmoschus , Diabetes Mellitus , Nefropatias Diabéticas , Flavonas , Podócitos , Humanos , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Flavonas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fibrose , Treonina/farmacologia , Colágeno/metabolismo , Serina/farmacologia , Diabetes Mellitus/tratamento farmacológico
13.
Phytother Res ; 35(1): 198-206, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32716080

RESUMO

Abelmoschus manihot, also called as "Huangkui" in Chinese, is an annual flowering herb plant in the family of Malvaceae. As a traditional Chinese medicine, the ethanol extract of the flower in Abelmoschus manihot is made as Huangkui capsule and has been used for medication of the patients with kidney diseases. Its efficacy in clinical symptoms is mainly improving renal function and reducing proteinuria among the patients with chronic kidney disease, diabetic kidney disease or IgA nephropathy. The possible mechanism of Huangkui capsule treatment in kidney diseases may include reducing inflammation and anti-oxidative stress, improving immune response, protecting renal tubular epithelial cells, ameliorating podocyte apoptosis, glomerulosclerosis and mesangial proliferation, as well as inhibiting renal fibrosis. In this review, we first described chemical constituents and pharmacokinetic characteristics in ethanol extract of the flower of Abelmoschus manihot. We then summarized the clinical and epidemiological relevancies of kidney diseases particularly in the mainland of China and discussed the possible molecular mechanisms of Huangkui capsule in the treatment of kidney diseases. Finally, we prospected further research on cellular and molecular mechanisms and application of this Chinese natural medicine in kidney diseases.


Assuntos
Abelmoschus/química , Nefropatias Diabéticas/tratamento farmacológico , Flores/química , Extratos Vegetais/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Animais , China , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrose , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Medicina Tradicional Chinesa , Extratos Vegetais/química , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806187

RESUMO

Abelmoschus manihot (L.) Medic (AM), called Huangshukui in Chinese, is a widely used medicinal plant. Each part of AM has medicinal value, including Abelmoschi Radix (AR), Abelmoschi Herba (AH), Abelmoschi Folium (AF), Abelmoschi Corolla (AC), and Abelmoschi Semen (AS). However, only AC is documented in the Chinese Pharmacopoeia. In order to investigate whether there is any difference between AC and the other parts of AM, an analytical method based on ultra-fast performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry (UFLC-QTRAP-MS/MS) was established for the simultaneous determination of 35 constituents in different parts of AM. Moreover, principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied to classify and evaluate the different parts of AM based on the content of the 35 constituents. The total contents of the 35 constituents in AC were significantly higher than in the other parts of AM and the results revealed significant differences between AC and the other parts of AM. Eight constituents were remarkably related to the sample classifications. This research does not just provide the basic information for revealing the distribution patterns in different parts of AM from the same origin, but also complements some of the scientific data for the comprehensive quality evaluation of AC.


Assuntos
Abelmoschus/química , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Extratos Vegetais/química
15.
Zhongguo Zhong Yao Za Zhi ; 46(10): 2527-2536, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34047100

RESUMO

A comprehensive analytical method based on ultra-fast liquid chromatography coupled with triple quadrupole/linear ion trap tandem mass spectrometry(UFLC-QTRAP-MS/MS) was established for simultaneous determination of the content of 38 active components in Abelmoschi Corolla, including flavonoids, organic acids, nucleosides and amino acids, so as to investigate the effects of different harvesting and processing methods on multi-active components in Abelmoschi Corolla. The chromatographic separation was performed on a XBridg®C_(18) column(4.6 mm×100 mm, 3.5 µm) with(0.1% formic acid water) methanol-acetonitrile(1∶1) as the mobile phase for gradient elution at 30 ℃. The flow rate was 0.5 mL·min~(-1). The components were detected in a multiple-reaction monitoring(MRM) mode. The gray relational analysis(GRA) was used to comprehensively evaluate the multiple active components of Abelmoschi Corolla at different harvesting times and drying temperatures. The results showed that 38 components had a good linearity with correlation coefficients all above 0.999 0. The method featured a good precision, repeatability and stability with the relative stan-dard deviations(RSDs) of less than 5.0%. Recoveries ranged from 98.06% to 104.4% with RSD between 0.22% and 4.9%. The results of GRA indicated that a better quality in the samples collected on September 9 th. Samples dried at 90 ℃ had a better quality. The established method is accurate and reliable, and can be used to assess the internal quality of Abelmoschi Corolla. This study can provide basic materials for determining appropriate harvesting time and processing method of Abelmoschi Corolla.


Assuntos
Nucleosídeos , Espectrometria de Massas em Tandem , Aminoácidos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida
16.
Mol Cell Proteomics ; 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500030

RESUMO

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (Δhik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly similar to that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found the majority of proteins of plasmid origin were significantly upregulated in Δhik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.

17.
Mol Cell Proteomics ; 16(7): 1258-1274, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28668777

RESUMO

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (Δhik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly like that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found most proteins of plasmid origin were significantly upregulated in Δhik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/genética , Proteômica/métodos , Synechocystis/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Viabilidade Microbiana , Mutação , Fotossíntese , Estresse Fisiológico , Synechocystis/genética
18.
Chem Biodivers ; 16(12): e1900467, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31556199

RESUMO

Pulmonary fibrosis (PF) is a chronic obstructive pulmonary disease without effective clinical drug treatment. Qing-Xuan Granule (QX) as a traditional Chinese patent medicine is clinically used to cure children's cough. This study was designed to investigate the effects of QX and possible molecular mechanisms for bleomycin-induced PF. The work used Western blotting and Q-PCR to explore the vitro and vivo mechanisms of QX treatment, while using HPLC-TOF/MS to explore the composition of QX. QX was given daily orally for two weeks after bleomycin intratracheal instillation. The protective effects of QX on lung function, inflammation, growth factors, hydroxyproline content and deposition of extracellular matrix were investigated. QX decreased expression of Col I and α-SMA in lung tissues by down-regulating TGF-ß1-Smad2/3 signaling and suppressed epithelial-mesenchymal transition and effectively reversed abnormal mRNA levels of MMP-1and TIMP-1 as well as LOXL-2 in lung tissues. HPLC-TOF/MS indicate that six substances could be the main active components, which were reported to protect against experimental lung disease.


Assuntos
Substâncias Protetoras/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Animais , Bleomicina/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Fibrose Pulmonar/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
19.
Yi Chuan ; 41(9): 863-874, 2019 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-31549684

RESUMO

Membrane proteins play important functions not only as receptors and transporters, but also in many other important intracellular functions such as photosynthetic and respiratory electron transport. Identification of membrane proteins is a necessary step to understand their functions. Membrane proteins are generally highly hydrophobic and difficult to be resolved by aqueous solutions, and large-scale proteomic identification of membrane proteins has been a great technical challenge. Significant efforts have been invested in the field to improve the solubility of membrane proteins in aqueous solutions that are compatible for mass spectrometry analysis. This review summarizes the main technological achievements in the field of membrane proteomics particularly for the improvement of membrane protein identification, and uses the photosynthetic model cyanobacterium Synechocystis sp. PCC6803 as an example to illustrate how technology advances push forward the field in terms of the increased coverage of membrane proteome identification.


Assuntos
Proteoma , Proteômica/tendências , Synechocystis/genética , Proteínas de Bactérias/genética , Espectrometria de Massas
20.
Proteomics ; 18(20): e1800046, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30194912

RESUMO

The histidine kinase Hik33 plays a central role in acclimation to changing environments in cyanobacteria. Deletion of hik33 induces a strong stress-like response in Synechocystis sp. PCC 6803 (Synechocystis) as represented by repressed photoautotrophic growth and photosynthesis, and differential expression of stress-responsive proteins. In contrast, the photomixotrophic growth of the hik33-deletion mutant (Δhik33) with glucose as the exogenous carbon source is only marginally repressed. To investigate how glucose rescues the growth of Δhik33, the proteomes of the photomixotrophically growing wild-type (WT) and the mutant strains of Synechocystis are quantitatively analyzed. It is found that glucose induces upregulation of the oxidative pentose phosphate (OPP) pathway. Depletion of glucose-6-phosphate dehydrogenase (G6PDH), which catalyzes the first and the rate-limiting step of the OPP pathway, significantly inhibits the photomixotrophic growth of Δhik33 but not of the WT. The result suggests that the OPP pathway, which is usually nonfunctional in the photomixotrophically growing WT, plays a major role in the photomixotrophic growth of Δhik33.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/farmacologia , Mutação , Via de Pentose Fosfato , Deleção de Sequência , Synechocystis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Estresse Oxidativo , Fotossíntese , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Synechocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA