Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38557845

RESUMO

The direct conversion of methane to methanol has attracted increasing interest due to abundant and low-cost natural gas resources. Herein, by anchoring Cr-oxo/-oxyhydroxides on UiO-66 metal-organic frameworks, we demonstrate that reactive anionic oxyl radicals can be formed by controlling the coordination environment based on the results of density functional theory calculations. The anionic oxyl radicals produced at the completely oxidized CrVI site acted as the active species for facile methane activation. The thermodynamically stable CrVI-oxo/-oxyhydroxides with the anionic oxyl radicals catalyze the activation of the methane C-H bond through a homolytic mechanism. An analysis of the results showed that the catalytic performance of the active oxyl species correlates with the reaction energy of methane activation and H adsorption energies. Following methanol formation, N2O can regenerate the active sites on the most stable CrVI oxyhydroxides, i.e., the Cr(O)4Hf species. The present study demonstrated that the anionic oxyl radicals formed on the anchored CrVI oxyhydroxides by tuning the coordination environment enabled facile methane activation and facilitated methanol production.

2.
Chemphyschem ; 24(4): e202200539, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223257

RESUMO

Modified NiO catalysts with controllable vacancies and dopants are promising for alkene production from oxidative dehydrogenation (ODH) of light alkanes, and a molecular understanding of the modification on elementary reaction steps would facilitate the design of highly efficient catalysts and catalytic processes. In this study, density functional theory (DFT) calculations was used to map out the complete reaction pathways of propane ODH on the NiO (100) surfaces with different modifiers. The results demonstrated that the presence of vacancies (O and Ni) and dopants (Li and Al) alters the electrophilicity of surface oxygen species, which in turn affects the reactivity towards C-H bond activation and the overall catalytic activity and selectivity. The strongly electrophilic O favors a radical mechanism for the first C-H activation on O followed by the second C-H activation on O-O site, whereas weak electrophilic O favors concerted C-H bond breaking over Ni-O site. The C-H bond activation proceeds through a late transition state, characterized by the almost completion of the O-H bond formation. Consequently, the adsorption energy of H adatom on O rather than p-band center or Bader charge of O has been identified to be an accurate descriptor to predict the activation barrier for C-H breaking (activity) as well as the difference between the activation barriers of propene and CH3 CCH3 (selectivity) of ODH.

3.
J Chem Phys ; 158(5): 054702, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754813

RESUMO

Understanding structural transformation and phase transition accompanying reactions in a solid as a catalyst or oxygen carrier is important to the design and optimization of many catalytic or chemical looping reaction processes. Herein, we combined density functional theory calculation with the stochastic surface walking global optimization approach to track the structural transformation accompanying the reduction of CuO upon releasing oxygen. We then used machine learning (ML) methods to correlate the structural properties of CuOx with varying x. By decomposing a reduction step into oxygen detachment and structural reconstruction, we identified two types of pathways: (1) uniform reduction with minimal structural changes; (2) segregated reduction with significant reconstruction. The results of ML analysis showed that the most important feature is the radial distribution functions of Cu-O at a percentage of oxygen vacancy [C(OV)] < 50% and Cu-Cu at C(OV) > 50% for CuOx formation. These features reflect the underlying physicochemical origin, i.e., Cu-O breaking and Cu-Cu formation in the respective stage of reduction. Phase diagram analysis indicates that CuO will be reduced to Cu2O under a typical oxygen uncoupling condition. This work demonstrates the complexity of solid structural transformation and the potential of ML methods in studying solid state materials involved in many chemical processes.

4.
Food Microbiol ; 112: 104246, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906310

RESUMO

This study aimed to investigate the time-course effect of Lactobacillus plantarum NJAU-01 in scavenging exogenous hydrogen peroxide (H2O2). The results showed that L. plantarum NJAU-01 at 107 CFU/mL was able to eliminate a maximum of 4 mM H2O2 within a prolonged lag phase and resume to proliferate during the following culture. Redox state in the start-lag phase (0 h, without the addition of H2O2), indicated by glutathione and protein sulfhydryl, was impaired in the lag phase (3 h and 12 h) and then gradually recovered during subsequent growing stages (20 h and 30 h). By using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and proteomics analysis, a total of 163 proteins such as PhoP family transcriptional regulator, glutamine synthetase, peptide methionine sulfoxide reductase, thioredoxin reductase, ribosomal proteins, acetolactate synthase, ATP binding subunit ClpX, phosphoglycerate kinase, UvrABC system protein A and UvrABC system protein B were identified as differential proteins across the entire growth phase. Those proteins were mainly involved in H2O2 sensing, protein synthesis, repairing proteins and DNA lesions, amino sugar and nucleotide sugar metabolism. Our data suggest that biomolecules of L. plantarum NJAU-01 are oxidized to passively consume H2O2 and are restored by the enhanced protein and/or gene repair systems.


Assuntos
Lactobacillus plantarum , Lactobacillus plantarum/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteômica , Oxirredução , Proteínas de Bactérias/genética
5.
Molecules ; 28(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36615568

RESUMO

Electrochemical reduction of CO2 to value-added chemicals has been hindered by poor product selectivity and competition from hydrogen evolution reactions. This study aims to unravel the origin of the product selectivity and competitive hydrogen evolution reaction on [MP]0 catalysts (M = Fe, Co, Rh and Ir; P is porphyrin ligand) by analyzing the mechanism of CO2 reduction and H2 formation based on the results of density functional theory calculations. Reduction of CO2 to CO and HCOO- proceeds via the formation of carboxylate adduct ([MP-COOH]0 and ([MP-COOH]-) and metal-hydride [MP-H]-, respectively. Competing proton reduction to gaseous hydrogen shares the [MP-H]- intermediate. Our results show that the pKa of [MP-H]0 can be used as an indicator of the CO or HCOO-/H2 preference. Furthermore, an ergoneutral pH has been determined and used to determine the minimum pH at which selective CO2 reduction to HCOO- becomes favorable over the H2 production. These analyses allow us to understand the product selectivity of CO2 reduction on [FeP]0, [CoP]0, [RhP]0 and [IrP]0; [FeP]0 and [CoP]0 are selective for CO whereas [RhP]0 and [IrP]0 are selective for HCOO- while suppressing H2 formation. These descriptors should be applicable to other catalysts in an aqueous medium.


Assuntos
Metaloporfirinas , Porfirinas , Dióxido de Carbono , Hidrogênio , Prótons
6.
Environ Sci Technol ; 56(12): 7853-7863, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35615937

RESUMO

N-doped defective nanocarbon (N-DNC) catalysts have been widely studied due to their exceptional catalytic activity in many applications, but the O3 activation mechanism in catalytic ozonation of N-DNCs has yet to be established. In this study, we systematically mapped out the detailed reaction pathways of O3 activation on 10 potential active sites of 8 representative configurations of N-DNCs, including the pyridinic N, pyrrolic N, N on edge, and porphyrinic N, based on the results of density functional theory (DFT) calculations. The DFT results indicate that O3 decomposes into an adsorbed atomic oxygen species (Oads) and an 3O2 on the active sites. The atomic charge and spin population on the Oads species indicate that it may not only act as an initiator for generating reactive oxygen species (ROS) but also directly attack the organics on the pyrrolic N. On the N site and C site of the N4V2 system (quadri-pyridinic N with two vacancies) and the pyridinic N site at edge, O3 could be activated into 1O2 in addition to 3O2. The N4V2 system was predicted to have the best activity among the N-DNCs studied. Based on the DFT results, machine learning models were utilized to correlate the O3 activation activity with the local and global properties of the catalyst surfaces. Among the models, XGBoost performed the best, with the condensed dual descriptor being the most important feature.

7.
J Sci Food Agric ; 102(7): 2731-2740, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34709652

RESUMO

BACKGROUND: Heat-induced composite gels were prepared with 20 g kg-1 myofibrillar protein (MP) sol, 20 g kg-1 modified starch and 100 g kg-1 lipid pre-emulsified by MP in 0.6 mol L-1 NaCl, at pH 6.2. The effects of esterified potato starch (EPS) and emulsified lipid (lard or peanut oil) on the rheology, texture properties and nuclear magnetic resonance characterization of MP gel were evaluated. RESULTS: The addition of starch and lipid significantly improved the gel strength and water holding capacity (WHC) of the MP gel. Analysis of the relaxation time compared with the WHC tests showed that the variation range of the transverse T22 relaxation time of a gel was positively proportional to changes in WHC of the composite gel, and the lower the T22 relaxation time, the better the WHC of composite gel. Moreover, MP gel with starch and emulsified lard added at the same time has the lowest T2 relaxation time, and also the best WHC of the gel. Environmental scanning electron microscopy showed that emulsified oil droplets embedded the gaps in the protein network, and the gelatinized starch contributed to restrict the oil droplet size, resulting in thicker MP gel. CONCLUSION: Emulsified lipid and modified starch have an important influence on the rheology and microstructure of MP gels, indicating the subtle interaction between starch, lipid and protein. The results suggest the potential feasibility of modified starch and vegetable oil to improve the textural properties in comminuted meat products. © 2021 Society of Chemical Industry.


Assuntos
Solanum tuberosum , Gorduras na Dieta , Géis/química , Proteínas Musculares/química , Óleo de Amendoim , Reologia , Amido/química , Água
8.
BMC Microbiol ; 21(1): 182, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130624

RESUMO

BACKGROUND: Excessive reactive oxygen species (ROS) can cause serious damage to the human body and may cause various chronic diseases. Studies have found that lactic acid bacteria (LAB) have antioxidant and anti-aging effects, and are important resources for the development of microbial antioxidants. This paper was to explore the potential role of an antioxidant strain, Lactobacillus plantarum NJAU-01 screened from traditional dry-cured meat product Jinhua Ham in regulating D-galactose-induced subacute senescence of mice. A total of 48 specific pathogen free Kun Ming mice (SPF KM mice) were randomly allocated into 6 groups: control group with sterile saline injection, aging group with subcutaneously injection of D-galactose, treatments groups with injection of D-galactose and intragastric administration of 107, 108, and 109 CFU/mL L. plantarum NJAU-01, and positive control group with injection of D-galactose and intragastric administration of 1 mg/mL Vitamin C. RESULTS: The results showed that the treatment group of L. plantarum NJAU-01 at 109 CFU/mL showed higher total antioxidant capacity (T-AOC) and the antioxidant enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) than those of the other groups in serum, heart and liver. In contrast, the content of the oxidative stress marker malondialdehyde (MDA) showed lower levels than the other groups (P < 0.05). The antioxidant capacity was improved with the supplement of the increasing concentration of L. plantarum NJAU-01. CONCLUSIONS: Thus, this study demonstrates that L. plantarum NJAU-01 can alleviate oxidative stress by increasing the activities of enzymes involved in oxidation resistance and decreasing level of lipid oxidation in mice.


Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Antioxidantes/metabolismo , Lactobacillus plantarum/fisiologia , Probióticos/administração & dosagem , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Malondialdeído/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
9.
J Chem Phys ; 152(5): 054709, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035433

RESUMO

A clear understanding of the structural transformation of copper-oxide-based oxygen carriers accompanying their reduction by fuels helps to design more efficient oxygen carriers for chemical looping combustion. Herein, density functional theory calculations have been performed on the bulk CuO, CuO(111) surface, and (CuO)32 cluster models with the same number of CuO molecular units to investigate structural transformation accompanying the reduction. The results showed that the averaged reaction energies of desorbing an oxygen molecule from the bulk and surface models are roughly the same [246.2 kJ/(mol O2) and 245.9 kJ/(mol O2), respectively]. The slab model does not significantly lower the overall reaction energy compared to the bulk model. In contrast, the averaged reaction energy using the cluster model is significantly lower [127.5 kJ/(mol O2)] than that of bulk and slab models. The key structural difference is the obvious Cu-Cu bond formation in the cluster model, which would result in nucleation of a metallic Cu phase. The results also showed that different states can be reached by desorbing different number oxygen atoms in a single step, corresponding to different reaction rates, when the system reaches the same level of reduction. These results demonstrate the complexity of reactions involving solid state materials and are consistent with the structural diversity observed experimentally. This study illustrates the importance of particle sizes and reaction conditions in the formation of suboxides during CuO reduction.

10.
J Sci Food Agric ; 100(1): 258-267, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31512250

RESUMO

BACKGROUND: Composite gels were individually prepared from 20 g kg-1 myofibrillar protein (MP) imbedded with typical native starch (potato, tapioca, rice or corn starch) in 0.6 mol L-1 NaCl at pH 6.2. The gel strength, water holding capacity, rheological properties and microstructure of the obtained myofibrillar protein-starch composite gels were evaluated. RESULTS: Tapioca starch improved (P < 0.05) gel strength and water holding capacity of MP composite gel at 80 °C. Rheological properties of MP-starch composites differed significantly with the addition of different types of native starch. Additionally, the promoting effect of starch on the storage modulus of the composite gels positively correlated with the gelatinization properties of different typical starch. Environmental scanning electron microscopy showed that the filling effect of starch on the composite gel was related to the pasting temperature and particle size of typical starch, with almost no particles forming at 80 °C. Moreover, the addition of starch changed the relaxation peak area and increased the relaxation time in nuclear magnetic resonance tests, which suggested that starch could improve the water holding capacity of MP-starch composite gels. CONCLUSION: Different typical native starch has varied impacts on the gel strength, water holding capacity, rheological properties and microstructure of MP gels, indicating the potential and feasibility of these typical native starches as an addition agent to modify the textural properties in comminuted meat products. © 2019 Society of Chemical Industry.


Assuntos
Produtos da Carne/análise , Proteínas Musculares/química , Miofibrilas/química , Extratos Vegetais/química , Amido/química , Animais , Aditivos Alimentares/química , Géis/química , Espectroscopia de Ressonância Magnética , Manihot/química , Oryza/química , Reologia , Solanum tuberosum/química , Suínos , Zea mays/química
11.
J Chem Phys ; 151(4): 044708, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370548

RESUMO

Molybdenum trioxide (α-MoO3) is a key component in the redox solid catalysts for methane activation. The wide range of interactions including van der Waals interaction and chemical bonding in α-MoO3 as well as between methane and the catalyst surface makes the accurate description of the methane chemistry a challenge. Herein, we performed a strongly constrained and appropriately normed (SCAN)-functional based density functional theory study of the surface chemistry and reactivity of α-MoO3 toward C-H bond activation of methane. With this meta-generalized-gradient approximation functional, we can predict the bulk structure of α-MoO3 more accurately while reproducing the thermal chemistry of MoO3. The results indicate that surface reduction of α-MoO3 (010) occurs preferably through releasing the terminal oxygen atoms, generating oxygen vacancies while exposing reduced Mo centers. These oxygen vacancies tend to be separated from each other at a higher density due to repulsive interactions. Furthermore, the reduced α-MoO3 (010) promotes methane activation kinetically by reducing the activation barrier for the break of the first C-H bond and thermodynamically by stabilizing the product state as compared with those on the stoichiometric surface. There is a synergy between the reduced Mo active site and surface lattice oxygen for C-H bond cleavage. Our results also show that the reactivity based on the Perdew-Burke-Ernzerhof functional is qualitatively consistent with that from the SCAN functional.

12.
J Sci Food Agric ; 98(2): 799-806, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28677851

RESUMO

BACKGROUND: Heat-induced composite gels were prepared with 20 g kg-1 (2%) myofibrillar protein (MP) sol and 100 g kg-1 (10%) olive oil pre-emulsified by MP or non-meat protein in 0.6 mol L-1 NaCl, at pH 6.2. The effect of different non-meat protein (soy protein isolate, egg-white protein isolate and sodium caseinate) pre-emulsions on the rheological properties and microstructure of MP gel was evaluated. RESULTS: Adding emulsion enhanced the gel strength of MP gel except for the soy protein isolate (SPI) as emulsifier group, but all emulsion group markedly improved (P < 0.05) the water-holding capacity and the storage modulus (G') of MP gels. SDS-PAGE show that some non-meat protein bands partially participated in the formation of MP composite gels with different kinds of emulsion added. Micrographs revealed that these emulsions made the gels become denser and more compact with subtle diverse effects. CONCLUSION: Different meat or non-meat proteins as emulsifier have varied impacts on the rheology and microstructure of MP gels, indicating the potential and feasibility of these non-meat proteins as emulsifiers to modify the textural properties in comminuted meat products. © 2017 Society of Chemical Industry.


Assuntos
Caseínas/química , Proteínas do Ovo/química , Proteínas Musculares/química , Azeite de Oliva/química , Proteínas de Soja/química , Emulsões , Géis , Reologia
13.
J Sci Food Agric ; 97(13): 4508-4514, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28304086

RESUMO

BACKGROUND: Protein oxidation is widespread in biochemical systems. The objective of the study was to investigate the differences in protein oxidation, µ-calpain activity, desmin proteolysis and protein solubility of beef psoas major (PM) and semi-membranosus (SM) muscles under three packaging systems during postmortem ageing. At 24 h postmortem, beef muscles were packaged respectively in air-permeable film overwrap (AP), vacuum pack (VP) or modified atmosphere (MAP, 80% O2 + 20% CO2 ), and then displayed for 10 days at 4 °C. RESULTS: Carbonyl group values and thiol group content were significantly influenced by packaging type and storage time. The SM muscles from AP and MAP showed greater µ-calpain activity compared to VP. Desmin of PM and SM from AP and MAP samples showed decreased proteolysis compared with VP. CONCLUSION: The results suggested that the inhibition of µ-calpain activity of beef samples from AP and MAP could be closely associated with protein oxidation which further lowered the level of desmin degradation compared to VP. © 2017 Society of Chemical Industry.


Assuntos
Calpaína/química , Desmina/química , Embalagem de Alimentos/métodos , Músculo Esquelético/química , Animais , Calpaína/metabolismo , Bovinos , Desmina/metabolismo , Embalagem de Alimentos/instrumentação , Carne/análise , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Oxirredução , Mudanças Depois da Morte , Proteólise
14.
J Am Chem Soc ; 138(32): 10191-8, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27452233

RESUMO

Conversion of CO2 and CH4 to value-added products will contribute to alleviating the green-house gas effect but is a challenge both scientifically and practically. Stabilization of the methyl group through CH4 activation and facile CO2 insertion ensure the realization of C-C coupling. In the present study, we demonstrate the ready C-C coupling reaction on a Zn-doped ceria catalyst. The detailed mechanism of this direct C-C coupling reaction was examined based on the results from density functional theory calculations. The results show that the Zn dopant stabilizes the methyl group by forming a Zn-C bond, thus hindering subsequent dehydrogenation of CH4. CO2 can be inserted into the Zn-C bond in an activated bent configuration, with the transition state in the form of a three-centered Zn-C-C moiety and an activation barrier of 0.51 eV. The C-C coupling reaction resulted in the acetate species, which could desorb as acetic acid by combining with a surface proton. The formation of acetic acid from CO2 and CH4 is a reaction with 100% atom economy, and the implementation of the reaction on a heterogeneous catalyst is of great importance to the utilization of the greenhouse gases. We tested other possible dopants including Al, Ga, Cd, In, and Ni and found a positive correlation between the activation barrier of C-C coupling and the electronegativity of the dopant, although C-H bond activation is likely the dominant reaction on the Ni-doped ceria catalyst.

15.
J Food Sci Technol ; 52(2): 1032-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25694715

RESUMO

Chinese-style sausage is a very popular meat product obtained from a mixture of chopped pork meat, lard, salt, spices, additives (nitrate, nitrite, and antioxidants) and/or starter cultures. The antioxidative effect of apple phenolic on lipid oxidation in Chinese-style sausage compared with that of butylated hydroxy toluene (BHT) and ursolic acid were studied. Lipid oxidation was assessed through determination of thiobarbituric acid-reactive substances (TBARs) and volatile aldehydes. The content and composition of fatty acids in phospholipid were evaluated. At the optimum addition level, apple phenolic (0.5 g·kg(-1) in total fat) was more effective at inhibiting lipid oxidation than BHT (0.15 g·kg(-1) in total fat) and ursolic acid (0.5 g·kg(-1) in total fat) in Chinese-style sausages during 120 days storage. Moreover, apple phenolic exhibited stronger phospholipid protective capacity than ursolic acid and BHT at the end of storage. This study reveals a potential application of apple phenolic to enhance the oxidation stability of meat products during long storage.

16.
Meat Sci ; 208: 109382, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952271

RESUMO

This research aims to investigate the effect of different ultrasonic powers cooking on the quality of pork meatballs. Pork meatballs treated with ultrasound-assisted cooking at 450 W had the most uniform and smooth structures displayed by scanning electron microscopy. Furthermore, with increasing ultrasonic powers, the water retention capacity of pork meatballs first increased and then decreased, compared with the non-ultrasound group, when the ultrasonic power was 450 W, the cooking yield of pork meatballs increased from 82.55% to 92.87%, and the centrifugal loss decreased from 25.35% to 11.52%. Additionally, ultrasound-assisted cooking had a positive effect on the moisture migration, tenderness, and sensory property of pork meatballs, and 450 W sample exhibited the highest overall acceptability score (P < 0.05). In conclusion, the physicochemical properties and microstructure of pork meatballs could be improved by appropriate ultrasonic power, and ultrasonic technology was considered as an effective processing method for improving the quality of meat products.


Assuntos
Produtos da Carne , Carne de Porco , Carne Vermelha , Animais , Suínos , Culinária/métodos , Produtos da Carne/análise
17.
Food Funct ; 15(11): 6174-6188, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770619

RESUMO

Probiotic intervention is an effective strategy to alleviate oxidative stress-related diseases. Our previous studies found that Lactiplantibacillus plantarum NJAU-01 (NJAU-01) exhibited antioxidant effects in a D-galactose (D-gal)-induced aging mouse model. However, the underlying mechanism remains to be unveiled. This study was aimed to investigate the ameliorative effect and mechanism of NJAU-01 against oxidative stress induced by D-gal. The results showed that NJAU-01 could reverse the tendency of a slow body weight gain induced by D-gal. NJAU-01 relieved hepatic oxidative stress via increasing the hepatic total antioxidant capacity and antioxidant enzyme activities including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Moreover, the malondialdehyde (MDA) level was reversed after NJAU-01 supplementation. The proteomic results showed that there were 201 differentially expressed proteins (DEPs) between NJAU-01 and D-gal groups. NJAU-01 regulated the expressions of glutathione S-transferase Mu 5 (Gstm5), glutathione S-transferase P2 (Gstp2) and NADH dehydrogenase 1α subcomplex subunit 7 (Ndufa7) related to oxidative stress, and autophagy protein 5 (Atg5) and plasma alpha-L-fucosidase (Fuca2) involved in autophagy, etc. 16S rDNA sequencing results showed that NJAU-01 supplementation could regulate the gut microbiota dysbiosis induced by D-gal via increasing the relative abundances of the phylum Firmicutes and the genus Lactobacillus and reducing the relative abundances of the phylum Bacteroidetes and the genera Lachnospiraceae_NK4A136_group as well as Prevotellaceae_UCG-001, etc.. Spearman correlation analysis results showed that the altered gut microbiota composition had a significant correlation with antioxidant enzyme activities and the DEPs related to oxidative stress. Overall, NJAU-01 alleviated hepatic oxidative stress induced by D-gal via manipulating the gut microbiota composition and hepatic protein expression profile.


Assuntos
Galactose , Microbioma Gastrointestinal , Fígado , Estresse Oxidativo , Probióticos , Proteômica , Estresse Oxidativo/efeitos dos fármacos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Probióticos/farmacologia , Probióticos/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Lactobacillus plantarum , Antioxidantes/farmacologia , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo
18.
Food Chem ; 447: 138955, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471279

RESUMO

The inoculation fermentation technology was applied to the processing of dried cured goose to investigate the protein degradation. Lactobacillus fermentum (L), Staphylococcus epidermidis (S) and mixed strains (L + S) were individually inoculated into the whole goose before drying. We studied the degradation of protein in the air-dried period of goose. The results showed that compared with natural fermentation, inoculation fermentation significantly increased the content of non-protein nitrogen (14.85 mg/g NPN), proteolysis index (8.98% PI), myofibril fragmentation index (89.35 MFI) and total amount of free amino acids (1332.6 mg/g FAA) of dried cured goose. Electrophoresis revealed that the inoculation fermentation accelerated the degradation of macromolecular proteins and the accumulation of small molecular proteins. The degree of protein degradation in four groups of goose was in an order of L + S group > S group > L group > CK group. It suggested that inoculation fermentation could promote the degradation of myofibrillar proteins.


Assuntos
Limosilactobacillus fermentum , Animais , Proteólise , Fermentação , Staphylococcus epidermidis , Gansos
19.
Foods ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338526

RESUMO

The objective of this study was to investigate the effect of pork oxidation through modified atmosphere packaging (MAP) on gel characteristics of myofibrillar proteins (MP) during the heat-induced gelation process. The pork longissimus thoracis (LT) was treated by MAP at varying oxygen concentrations (0, 20, 40, 60, and 80% O2) with a 5-day storage at 4 °C for the detection of MP oxidation and gel properties. The findings showed the rise of O2 concentration resulted in a significant increase of carbonyl content, disulfide bond, and particle size, and a decrease of sulfhydryl content and MP solubility (p < 0.05). The gel textural properties and water retention ability were significantly improved in MAP treatments of 0-60% O2 (p < 0.05), but deteriorated at 80% O2 level. As the concentration of O2 increased, there was a marked decrease in the α-helix content within the gel, accompanied by a simultaneous increase in ß-sheet content (p < 0.05). Additionally, a judicious oxidation treatment (60% O2 in MAP) proved beneficial for crafting dense and uniform gel networks. Our data suggest that the oxidation treatment of pork mediated by O2 concentration in MAP is capable of reinforcing protein hydrophobic interaction and disulfide bond formation, thus contributing to the construction of superior gel structures and properties.

20.
Phys Chem Chem Phys ; 15(24): 9549-61, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23652827

RESUMO

This paper describes an investigation into the general trend in electronic properties of anatase TiO2 photocatalysts co-doped with transition metals and nitrogen employing first-principles density functional theory. Fourteen different transition metals (M), including Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, and Cd, have been considered. The characteristic band structures of the co-doping systems involving the transition metal series are presented. Our results indicate that the absorption edges of TiO2 are shifted to the visible-light region upon introduction of dopants, due to the reduced conduction band minimum (CBM) and the formation of impurity energy levels (IELs) in the band gap. These IELs are primarily formed from (a) the anti-bonding orbitals of the M-O (M indicates the doped transition metal) bonds, (b) the unsaturated nonbonding d orbitals of the doped transition metal (mainly d(xy), d(yz), and d(xz)), and (c) the Ti-O bonding/Ti-N anti-bonding orbitals of the bond next to the doped transition metal. When the valence d electrons of the doped metal are between 3 and 7, all three types of IELs appear in the band gap of the (M, N) co-doped systems. For systems doped with a metal of more than 7 valence electrons, only types (a) and (c) of IELs as well as the unoccupied pz state of N are observed. Based on our analysis, we propose that the co-doping systems such as (V, N), (Cr, N), and (Mn, N), which have the IELs with a significant bandwidth, are of great potential as candidates for photovoltaic applications in the visible light range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA