RESUMO
Transparent Li2O-BaO-La2O3-Al2O3-B2O3-SiO2 glasses doped with Tb(3+) ion were prepared by high temperature melting method. Luminescence properties of Tb(3+)-doped borosilicate glasses have been investigated by transmission, excitation, emission and luminescence decay measurements. The transmission spectrum shows the glass has good transmittance in the visible region. Under the 236 nm UV excitation the intense green emission from (5)D4 level is observed in Tb(3+)-doped borosilicate glass, comparable in intensity to the violet-blue emission starting from the (5)D3 level. The green emission intensity of Tb(3+) ion firstly increases and then decreases with the decreasing B2O3/SiO2 ratio in glass matrix. (5)D4â(7)FJ (J=6, 5, 4 and 3) transitions of Tb(3+) ion in borosilicate glass are greatly enhanced with increasing concentration of Tb(3+) through the cross relaxation [Tb(3+) ((5)D3)+Tb(3+) ((7)F6)âTb(3+) ((5)D4)+Tb(3+) ((7)F0)] between two Tb(3+) ions. Luminescence decay time of 2.13 ms is obtained for the emission transitions starting from (5)D4 level in 2.5Li2O-20BaO-20La2O3-2.5Al2O3-20B2O3-35SiO2-0.5Tb4O7 glass. The results show that Tb(3+)-doped borosilicate glasses would be potential candidates for scintillating material for static X-ray imaging.