Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 31(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28544404

RESUMO

Oxidative stress induces apoptosis in cardiac cells, and antioxidants attenuate the injury. MicroRNAs (miRNAs) are also involved in cell death; therefore, this study aimed to investigate the role of miRNAs in the effect of selenium on oxidative stress-induced apoptosis. The effects of sodium selenite were analyzed via cell viability, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration. Flow cytometry was used to evaluate cell apoptosis. Fura-2AM was used to calculate intracellular Ca2+ concentration. Sodium selenite could ameliorate hydrogen peroxide (H2 O2 )-induced cell apoptosis and improve expression levels of glutathione peroxidase and thioredoxin reductase. Pretreatment with sodium selenite improved SOD activity and reduced MDA concentration. Treatments with H2 O2 or sodium selenite decreased miR-328 levels. MiR-328 overexpression enhanced cell apoptosis, reduced ATP2A2 levels, and increased intracellular Ca2+ concentration, while inhibition produced opposite effects. MiR-328 might be involved in the effect of sodium selenite on H2 O2 -induced cell death in H9c2 cells.


Assuntos
Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , MicroRNAs/metabolismo , Mioblastos Cardíacos/metabolismo , Selenito de Sódio/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Malondialdeído/metabolismo , Mioblastos Cardíacos/patologia , Peroxirredoxinas/metabolismo , Ratos , Selênio/farmacologia , Superóxido Dismutase/metabolismo
2.
Biol Trace Elem Res ; 199(1): 185-196, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32172502

RESUMO

Previous studies have raised concerns that kidney disease is often closely related to low serum Se levels in patients and that hyposelenemia may increase the vulnerability of patients to complications. However, few studies examining renal injury caused by Se deficiency have been conducted. To determine the effects of a selenium-deficient diet on renal function, a mouse model was fed a selenium-deficient diet (0.02 mg Se/kg) for 20 weeks. Meanwhile, mice in the control group (selenium-adequate) were fed a standard diet (0.18 mg Se/kg). The cellular models were established by lentiviral Trnau1ap-shRNA vectors transfected into mouse podocyte (MPC5) and mouse renal tubular epithelial (TCMK1) cell lines. Significant increases in serum creatinine levels and urinary protein/creatinine ratios were accompanied by increased MDA content in the Se-deficient group compared to the control group. The morphological observations of tissues showed widespread inflammation and ultrastructural changes in the Se-deficient group, such as swollen mitochondria and extensive podocyte fusion and renal tubular microvilli shedding. In addition, the expression of COXIV and cytochrome c was significantly downregulated in the Se-deficient group. Importantly, the mRNA levels of silent mating type information regulation 2 homolog 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and the protein levels of SIRT1 were increased in the Se-deficient group compared with the normal control group. Our data indicate that Se deficiency induces renal injury in mice. The elevated oxidative stress caused by Se deficiency may result in mitochondrial damage, which might affect renal function. Moreover, the SIRT1/PGC1α axis likely plays an important role in the compensatory mechanism of mitochondrial dysfunction.


Assuntos
Biogênese de Organelas , Selênio , Animais , Humanos , Rim/metabolismo , Camundongos , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Selênio/metabolismo , Fatores de Transcrição/metabolismo
3.
Mol Med Rep ; 15(2): 988-994, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28101579

RESUMO

Transfer RNA selenocysteine 1 associated protein 1 (Trnau1ap) serves an essential role in the synthesis of selenoproteins, which have critical functions in numerous biological processes. Selenium deficiency results in a variety of diseases, including cardiac disease. However, the mechanisms underlying myocardial injury induced by selenium deficiency remain unclear. The present study examined the effects of Trnau1ap under­ and overexpression in cardiomyocyte­like H9c2 cells, by transfection with small interfering RNA and an overexpression plasmid, respectively. Expression levels of glutathione peroxidase, thioredoxin reductase and selenoprotein K were decreased in Trnau1ap­underexpressing cells, and increased in Trnau1ap­overexpressing cells. Using MTT, proliferating cell nuclear antigen, annexin V and caspase­3 activity assays, it was demonstrated that reducing Trnau1ap expression levels inhibited the proliferation of H9c2 cells and induced apoptosis. Conversely, increasing Trnau1ap expression levels promoted cell growth. Western blot analysis revealed that the phosphoinositide 3­kinase/protein kinase B signaling pathway was activated in Trnau1ap­underexpressing cells. Furthermore, the apoptotic pathway was activated in these cells, evidenced by relatively greater expression levels of B­cell lymphoma (Bcl­2)­associated X protein and reduced expression levels of Bcl­2. Taken together, these findings suggest that Trnau1ap serves a key role in the proliferation and apoptosis of H9c2 cells. The present study provides insight into the underlying mechanisms of myocardial injury induced by selenium deficiency.


Assuntos
Apoptose , Proliferação de Células , Mioblastos Cardíacos/citologia , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Potencial da Membrana Mitocondrial , Mioblastos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Proteína X Associada a bcl-2/metabolismo
4.
Sheng Wu Gong Cheng Xue Bao ; 31(2): 281-90, 2015 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-26062349

RESUMO

DHA (22:6n-3) is a Ω-3 polyunsaturated fatty acid with 22 carbon atoms and 6 double bonds, which has important biological functions in human body. Human and other mammals synthesize only limited amounts of DHA, more requirements must be satisfied from food resources. However, the natural resources of DHA (Mainly deep-sea fish and other marine products) are prone to depletion. New resources development is still insufficient to satisfy the growing market demand. Previous studies have revealed that the mammals can increase the synthesis of DHA and other long-chain polyunsaturated fatty acids after transgenic procedures. In this study, mammalian cells were transfected with Δ6, Δ5 desaturase, Δ6, Δ5 elongase, Δ15 desaturase (Isolated from nematode Caenorhabditis elegans) and Δ4 desaturase (Isolated from Euglena gracilis), simultaneously. Results show that the expression or overexpression of these 6 enzymes is capable of conversion of the o-6 linoleic acid (LA, 18:2n-6) in DHA (22:6n-3). DHA content has increased from 16.74% in the control group to 25.3% in the experimental group. The strategy and related technology in our research provided important data for future production the valuable DHA (22:6n-3) by using genetically modified animals.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Dessaturases/biossíntese , Ácido Linoleico/química , Animais , Caenorhabditis elegans/enzimologia , Células Cultivadas , Euglena gracilis/enzimologia , Mamíferos , Transfecção
5.
Sheng Wu Gong Cheng Xue Bao ; 30(9): 1464-72, 2014 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-25720161

RESUMO

Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.


Assuntos
Ácido Graxo Sintases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Acetiltransferases/genética , Acetiltransferases/metabolismo , Ácido Araquidônico/biossíntese , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Ácido Graxo Sintases/genética , Vetores Genéticos , Células HEK293 , Humanos , Transfecção
6.
PLoS One ; 9(5): e96503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788769

RESUMO

Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the accumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased production of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácido alfa-Linolênico/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Ácidos Graxos Dessaturases/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação Enzimológica da Expressão Gênica , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção/métodos , Transgenes/genética
7.
PLoS One ; 8(12): e84871, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391980

RESUMO

Arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the most biologically active polyunsaturated fatty acids, but their biosyntheses in mammals are very limited. The biosynthesis of DHA is the most difficult, because this undergoes the Sprecher pathway--a further elongation step from docosapentaenoic acid (DPA), a Δ6-desaturase acting on a C24 fatty acid substrate followed by a peroxisomal chain shortening step. This paper reports the successful heterologous expression of two non-mammalian genes (with modification of codon usage), coding for Euglena gracilis Δ4-desaturase and Siganus canaliculatus Δ4-desaturase respectively, in mammalian cells (HEK293 cell line). Both of the Δ4-desaturases can efficiently function, directly converting DPA into DHA. Moreover, the cooperation of the E. gracilis Δ4-desaturase with C. elegans Δ15-desaturase (able to convert a number of n-6 PUFAs to their corresponding n-3 PUFAs) in transgenic HEK293 cells made a more desirable fatty acid composition--a drastically reduced n-6/n-3 PUFAs ratio and a high level of DHA as well as EPA and ARA. Our findings provide a basis for potential applications of the gene constructs for expression of Δ15/Δ4-desaturases in transgenic livestock to produce such a fatty acid profile in the related products, which certainly will bring benefit to human health.


Assuntos
Caenorhabditis elegans/genética , Euglena gracilis/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/metabolismo , Peixes/genética , Técnicas de Transferência de Genes , Animais , Caenorhabditis elegans/enzimologia , Cromatografia Gasosa , Primers do DNA/genética , Euglena gracilis/enzimologia , Ácidos Graxos Dessaturases/metabolismo , Células HEK293 , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA