Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
1.
Mol Cell ; 82(7): 1249-1260.e7, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35216667

RESUMO

Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.


Assuntos
Carcinoma Papilar , Carcinoma de Células Renais , Fumaratos , Neoplasias Renais , PTEN Fosfo-Hidrolase , Carcinogênese , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/enzimologia , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cisteína/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/farmacologia , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Sunitinibe/farmacologia
2.
Mol Cell ; 82(20): 3919-3931.e7, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270249

RESUMO

Cancer-specific TERT promoter mutations have been linked to the reactivation of epigenetically silenced TERT gene by creating de novo binding motifs for E-Twenty-Six transcription factors, especially GABPA. How these mutations switch on TERT from epigenetically repressed states to expressed states have not been defined. Here, we revealed that EGFR activation induces ERK1/2-dependent phosphorylation of argininosuccinate lyase (ASL) at Ser417 (S417), leading to interactions between ASL and GABPA at the mutant regions of TERT promoters. The ASL-generated fumarate inhibits KDM5C, leading to enhanced trimethylation of histone H3 Lys4 (H3K4me3), which in turn promotes the recruitment of c-Myc to TERT promoters for TERT expression. Expression of ASL S417A, which abrogates its binding with GABPA, results in reduced TERT expression, inhibited telomerase activity, shortened telomere length, and impaired brain tumor growth in mice. This study reveals an unrecognized mechanistic insight into epigenetically activation of mutant TERT promoters where GABPA-interacted ASL plays an instrumental role.


Assuntos
Glioblastoma , Telomerase , Animais , Camundongos , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Fumaratos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Histonas/genética , Histonas/metabolismo , Mutação , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas
3.
Proc Natl Acad Sci U S A ; 120(25): e2301011120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307468

RESUMO

As a sustainable approach for N2 fixation, electrocatalytic N2 reduction reaction (N2RR) to produce ammonia (NH3) is highly desirable with a precise understanding to the structure-activity relationship of electrocatalysts. Here, firstly, we obtain a novel carbon-supported oxygen-coordinated single-Fe-atom catalyst for highly efficient production of ammonia from electrocatalytic N2RR. Based on such new type of N2RR electrocatalyst, by combining operando X-ray absorption spectra (XAS) with density function theory calculation, we reveal significantly that the as-prepared active coordination structure undergoes a potential-driven two-step restructuring, firstly from FeSAO4(OH)1a to FeSAO4(OH)1a'(OH)1b with the adsorption of another -OH on FeSA at open-circuit potential (OCP) of 0.58 VRHE, and subsequently restructuring from FeSAO4(OH)1a'(OH)1b to FeSAO3(OH)1a″ due to the breaking of one Fe-O bond and the dissociation of one -OH at working potentials for final electrocatalytic process of N2RR, thus revealing the first potential-induced in situ formation of the real electrocatalytic active sites to boost the conversion of N2 to NH3. Moreover, the key intermediate of Fe-NNHx was detected experimentally by both operando XAS and in situ attenuated total reflection-surface-enhanced infrared absorption spectra (ATR-SEIRAS), indicating the alternating mechanism followed by N2RR on such catalyst. The results indicate the necessity of considering the potential-induced restructuring of the active sites on all kinds of electrocatalysts for such as highly efficient ammonia production from N2RR. It also paves a new way for a precise understanding to the structure-activity relationship of a catalyst and helps the design of highly efficient catalysts.

4.
FASEB J ; 38(1): e23334, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050647

RESUMO

Mesenchymal stem cells (MSCs) are a popular cell source for repairing the liver. Improving the survival rate and colonization time of MSCs may significantly improve the therapeutic outcomes of MSCs. Studies showed that 78-kDa glucose-regulated protein (GRP78) expression improves cell viability and migration. This study aims to examine whether GRP78 overexpression improves the efficacy of rat bone marrow-derived MSCs (rBMSCs) in HS-induced liver damage. Bone marrow was isolated from the femurs and tibias of rats. rBMSCs were transfected with a GFP-labeled GRP78 expression vector. Flow cytometry, transwell invasion assay, scratch assay immunoblotting, TUNEL assay, MTT assay, and ELISA were carried out. The results showed that GRP78 overexpression enhanced the migration and invasion of rBMSCs. Moreover, GRP78-overexpressing rBMSCs relieved liver damage, repressed liver oxidative stress, and inhibited apoptosis. We found that overexpression of GRP78 in rBMSCs inhibited activation of the NLRP3 inflammasome, significantly decreased the levels of inflammatory factors, and decreased the expression of CD68. Notably, GRP78 overexpression activated the Nrf-2/HO-1 pathway and inhibited the NF-κB pathway. High expression of GRP78 efficiently enhanced the effect of rBMSC therapy. GRP78 may be a potential target to improve the therapeutic efficacy of BMSCs.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Chaperona BiP do Retículo Endoplasmático , Células-Tronco Mesenquimais , Choque Hemorrágico , Animais , Ratos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Choque Hemorrágico/metabolismo
6.
Nucleic Acids Res ; 51(22): e113, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37941133

RESUMO

Mammalian cells carrying defined genetic variations have shown great potentials in both fundamental research and therapeutic development. However, their full use was limited by lack of a robust method to construct large monoclonal high-quality combinatorial libraries. This study developed cell cycle arrested recombinase-mediated cassette exchange (aRMCE), able to provide monoclonality, precise genomic integration and uniform transgene expression. Via optimized nocodazole-mediated mitotic arrest, 20% target gene replacement efficiency was achieved without antibiotic selection, and the improved aRMCE efficiency was applicable to a variety of tested cell clones, transgene targets and transfection methods. As a demonstration of this versatile method, we performed directed evolution of fragment crystallizable (Fc), for which error-prone libraries of over 107 variants were constructed and displayed as IgG on surface of CHO cells. Diversities of constructed libraries were validated by deep sequencing, and panels of novel Fc mutants were identified showing improved binding towards specific Fc gamma receptors and enhanced effector functions. Due to its large cargo capacity and compatibility with different mutagenesis approaches, we expect this mammalian cell platform technology has broad applications for directed evolution, multiplex genetic assays, cell line development and stem cell engineering.


Assuntos
Recombinases , Cricetinae , Animais , Recombinases/genética , Cricetulus , Células CHO , Transfecção , Ciclo Celular
7.
Proc Natl Acad Sci U S A ; 119(14): e2114639119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349346

RESUMO

SignificanceHere, with single-molecule fluorescence microscopy, we study the catalytic behavior of individual Pt atoms at single-turnover resolution, and then reveal the unique catalytic properties of Pt single-atom catalyst and the difference in catalytic properties between individual Pt atoms and Pt nanoparticles. Further density functional theory calculation indicates that unique catalytic properties of Pt single-atom catalyst could be attributed intrinsically to the unique surface properties of Pt1-based active sites.


Assuntos
Nanopartículas , Platina , Catálise , Cinética , Platina/química , Propriedades de Superfície
8.
J Infect Dis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843067

RESUMO

HIF-1α is a pivotal regulator of metabolic and inflammatory responses. This study investigated the role of HIF-1α in M. bovis infection and its effects on host immune metabolism and tissue damage. We evaluated the expression of immunometabolism markers and MMPs infected with M. bovis, and following HIF-1α inhibition in vitro. To understand the implications of HIF-1α inhibition on disease progression, mice at different infection stages were treated with the HIF-1α inhibitor, YC-1. Our results revealed an upregulation of the HIF-1α in macrophages post-M. bovis infection, facilitating enhanced M1 macrophage polarization. The blockade of HIF-1α moderated these responses but escalated MMP activity, hindering bacterial control. Consistent with our in vitro results, early-stage treatment of mice with YC-1 aggravated pathological alterations and tissue damage, while late-stage HIF-1α inhibition proved beneficial in managing the disease. Overall, our findings underscored the nuanced role of HIF-1α across varying phases of M. bovis infection.

9.
J Am Chem Soc ; 146(11): 7605-7615, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467427

RESUMO

Cu-SSZ-13 has been commercialized for selective catalytic reduction with ammonia (NH3-SCR) to remove NOx from diesel exhaust. As its synthesis usually requires toxic and costly organic templates, the discovery of alternative Cu-based zeolite catalysts with organotemplate-free synthesis and comparable or even superior NH3-SCR activity to that of Cu-SSZ-13 is of great academic and industrial significance. Herein, we demonstrated that Cu-T with an intergrowth structure of offretite (OFF) and erionite (ERI) synthesized by an organotemplate-free method showed better catalytic performance than Cu-ERI and Cu-OFF as well as Cu-SSZ-13. Structure characterizations and density functional theory calculations indicated that the intergrowth structure promoted more isolated Cu2+ located at the 6MR of the intergrowth interface, resulting in a better hydrothermal stability of Cu-T than Cu-ERI and Cu-OFF. Strikingly, the low-temperature activity of Cu-T significantly increased after hydrothermal aging, while that of Cu-ERI and Cu-OFF substantially decreased. Based on in situ diffuse reflectance infrared Fourier transform spectra analysis and density functional theory calculations, the reason can be attributed to the fact that NH4NO3 formed on the CuxOy species within ERI polymorph of Cu-T underwent a fast SCR reaction pathway with the assistance of Brønsted acid sites at the intergrowth interfaces under standard SCR reaction conditions. Significantly, Cu-T exhibited a wider temperature window at a catalytic activity of over 90% than Cu-SSZ-13 (175-550 vs 175-500 °C for fresh and 225-500 vs 250-400 °C for hydrothermal treatment). This work provides a new direction for the design of high-performance NH3-SCR catalysts in terms of the interplay of the intergrowth structure of zeolites.

10.
Breast Cancer Res ; 26(1): 94, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844963

RESUMO

BACKGROUND: RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS: Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS: As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS: This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.


Assuntos
Neoplasias da Mama , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Metiltransferases , Estabilidade de RNA , Proteína 1 de Ligação a Y-Box , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
11.
Opt Express ; 32(7): 11934-11951, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571030

RESUMO

Optical coherence tomography (OCT) can resolve biological three-dimensional tissue structures, but it is inevitably plagued by speckle noise that degrades image quality and obscures biological structure. Recently unsupervised deep learning methods are becoming more popular in OCT despeckling but they still have to use unpaired noisy-clean images or paired noisy-noisy images. To address the above problem, we propose what we believe to be a novel unsupervised deep learning method for OCT despeckling, termed Double-free Net, which eliminates the need for ground truth data and repeated scanning by sub-sampling noisy images and synthesizing noisier images. In comparison to existing unsupervised methods, Double-free Net obtains superior denoising performance when trained on datasets comprising retinal and human tissue images without clean images. The efficacy of Double-free Net in denoising holds significant promise for diagnostic applications in retinal pathologies and enhances the accuracy of retinal layer segmentation. Results demonstrate that Double-free Net outperforms state-of-the-art methods and exhibits strong convenience and adaptability across different OCT images.


Assuntos
Algoritmos , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem , Cintilografia , Processamento de Imagem Assistida por Computador/métodos
12.
Toxicol Appl Pharmacol ; 486: 116934, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663673

RESUMO

The development of diabetes mellitus (DM) is generally accompanied by erectile dysfunction (ED) and pulmonary arterial hypertension (PAH), which increases the use of combination drug therapy and the risk of drug-drug interactions. Saxagliptin for the treatment of DM, sildenafil for the treatment of ED and PAH, and macitentan for the treatment of PAH are all substrates of CYP3A4, which indicates their potential involvement in drug-drug interactions. Therefore, we investigated potential pharmacokinetic interactions between saxagliptin and sildenafil/macitentan. We investigated this speculation both in vitro and in vivo, and explored the underlying mechanism using in vitro hepatic metabolic models and molecular docking assays. The results showed that sildenafil substantially inhibited the metabolism of saxagliptin by occupying the catalytic site of CYP3A4 in a competitive manner, leading to the alterations in the pharmacokinetic properties of saxagliptin in terms of increased maximum plasma concentration (Cmax), area under the plasma concentration-time curve from time 0 to 24 h (AUC(0-t)), area under the plasma concentration-time curve from time 0 extrapolated to infinite time (AUC(0-∞)), decreased clearance rate (CLz/F), and prolonged terminal half-life (t1/2). In contrast, a slight inhibition was observed in saxagliptin metabolism when concomitantly used with macitentan, as no pharmacokinetic parameters were altered, except for CLz/F. Thus, dosage adjustment of saxagliptin may be required in combination with sildenafil to achieve safe therapeutic plasma concentrations and reduce the risk of potential toxicity, but it is not necessary for co-administration with macitentan.


Assuntos
Adamantano , Dipeptídeos , Interações Medicamentosas , Pirimidinas , Citrato de Sildenafila , Sulfonamidas , Citrato de Sildenafila/farmacocinética , Citrato de Sildenafila/farmacologia , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Dipeptídeos/farmacocinética , Dipeptídeos/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Humanos , Adamantano/análogos & derivados , Adamantano/farmacocinética , Adamantano/farmacologia , Masculino , Animais , Citocromo P-450 CYP3A/metabolismo , Simulação de Acoplamento Molecular , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacocinética , Inibidores da Dipeptidil Peptidase IV/farmacologia
13.
Mol Pharm ; 21(4): 1691-1704, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430187

RESUMO

In the clinical application of freeze-dried highly concentrated omalizumab formulations, extensive visible bubbles (VBs) can be generated and remain for a long period of time in the reconstitution process, which greatly reduces the clinical use efficiency. It is necessary to understand the forming and breaking mechanism of VBs in the reconstitution process, which is a key factor for efficient and safe administration of biopharmaceutical injection. The effects of different thermal treatments on the volume of VBs and stability of omalizumab, mAb-1, and mAb-2 were investigated. The internal microvoids of the cake were characterized by scanning electron microscopy and mercury intrusion porosimetry. Electron paramagnetic resonance was applied to obtain the molecular mobility of the protein during annealing. A large number of VBs were generated in the reconstitution process of unannealed omalizumab and remained for a long period of time. When annealing steps were added, the volume of VBs was dramatically reduced. When annealed at an aggressive temperature (i.e., -6 °C), although the volume of VBs decreased, the aggregation and acidic species increased significantly. Thus, our observations highlight the importance of setting an additional annealing step with a suitable temperature, which contributes to reducing the VBs while maintaining the stability of the high concentration freeze-dried protein formulation.


Assuntos
Omalizumab , Proteínas , Temperatura , Liofilização , Estabilidade de Medicamentos
14.
Langmuir ; 40(22): 11571-11581, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38779964

RESUMO

3D aerogels incorporating functionalized reduced graphene oxide (SUL/rGO) were prepared as a hydrothermal method utilizing graphene oxide (GO) and a sulfonyldibenzene derivative (SUL) as raw materials. The aromatic compound SUL, which contains hydroxyl and sulfonyl groups, was bonded to reduced graphene oxide (rGO) through π-π connections. The obtained composite material exhibited porosity within its structure with improved hydrophilicity, along with excellent electrochemical characteristics. This improvement was ascribed to the specific rGO structure, as well as the pseudocapacitance inherent in SUL, both of which synergistically contribute to improvement in the characteristics of the prepared electrode materials. Also, an analysis was performed employing density functional theory from which the density of states and adsorption energy of SUL on the surface of rGO were computed to further investigate the charge storage process within the prepared composite. The prepared SUL/rGO-2 electrode exhibited the highest specific capacitance value of 388 F/g at a current density equal to 1 A/g. The constructed symmetrical supercapacitor, SUL/rGO-2//SUL/rGO-2, attained an energy density value of 14.55 Wh/kg at a power density equal to 350 W/kg with an exceptional galvanostatic charge-discharge (GCD) cyclic stability equal to 91% following 10 000 cycles. Therefore, this review presents a novel functionalized graphene-based material incorporating hydroxyl and sulfonyl groups, which holds promise in future energy storage applications.

15.
Pharm Res ; 41(2): 321-334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38291165

RESUMO

PURPOSES: We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation. METHODS: The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet - visible (UV-Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X. RESULTS: Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%). CONCLUSIONS: Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.


Assuntos
Anticorpos Monoclonais , Química Farmacêutica , Anticorpos Monoclonais/química , Química Farmacêutica/métodos , Excipientes/química , Liofilização/métodos , Manitol , Água , Estabilidade de Medicamentos
16.
Prev Med ; 184: 107985, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705485

RESUMO

OBJECTIVE: This observational study examined the factors associated with the physical activity (PA) of children and adolescents outside of school within the framework of Problem Behavior Theory (PBT). METHODS: This cross-sectional study obtained data from 6528 children and adolescents aged 6-16 years recruited from ten schools in Shanghai, China. The questionnaire measured out-of-school PA and PBT-based correlates. A series of multiple linear regressions were used to explore the factors influencing children and adolescents' out-of-school PA separately. Structural equation modeling (SEM) was used to explore the association between the three systems of PBT and out-of-school PA. RESULTS: Higher intrinsic motivation is positively associated with increased PA for children (b = 1.038, 95%CI: 0.897-1.180) and adolescents (b = 1.207, 95%CI: 0.890-1.524). Greater frequency of parental involvement in PA correlates with elevated PA for both children (b = 2.859, 95%CI: 2.147-3.572) and adolescents (b = 2.147, 95%CI: 0.311-3.983). In children, increased use of community exercise areas or facilities (b = 1.705, 95%CI: 0.234-3.176) and higher recreational screen time (b = 9.732, 95%CI: 5.614-13.850) are associated with higher PA. The SEM showed that factors of the personality system had a significant direct effect on out-of-school PA among children and adolescents, and factors of the behavior system also had a significant effect on children. CONCLUSIONS: Our findings suggest that the personality system, particularly intrinsic motivation, is important in promoting out-of-school PA in children and adolescents. For children, modifiable health behaviors in the behavior system can similarly influence PA.


Assuntos
Exercício Físico , Motivação , Humanos , Estudos Transversais , Masculino , Feminino , Exercício Físico/psicologia , China , Adolescente , Criança , Inquéritos e Questionários , Instituições Acadêmicas , Comportamento Problema/psicologia , População do Leste Asiático
17.
J Nanobiotechnology ; 22(1): 126, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519957

RESUMO

The successful reprogramming of impaired wound healing presents ongoing challenges due to the impaired tissue microenvironment caused by severe bacterial infection, excessive oxidative stress, as well as the inappropriate dosage timing during different stages of the healing process. Herein, a dual-layer hydrogel with sodium alginate (SA)-loaded zinc oxide (ZnO) nanoparticles and poly(N-isopropylacrylamide) (PNIPAM)-loaded Cu5.4O ultrasmall nanozymes (named programmed time-released multifunctional hydrogel, PTMH) was designed to dynamically regulate the wound inflammatory microenvironment based on different phases of wound repairing. PTMH combated bacteria at the early phase of infection by generating reactive oxygen species through ZnO under visible-light irradiation with gradual degradation of the lower layer. Subsequently, when the upper layer was in direct contact with the wound tissue, Cu5.4O ultrasmall nanozymes were released to scavenge excessive reactive oxygen species. This neutralized a range of inflammatory factors and facilitated the transition from the inflammatory phase to the proliferative phase. Furthermore, the utilization of Cu5.4O ultrasmall nanozymes enhanced angiogenesis, thereby facilitating the delivery of oxygen and nutrients to the impaired tissue. Our experimental findings indicate that PTMHs promote the healing process of diabetic wounds with bacterial infection in mice, exhibiting notable antibacterial and anti-inflammatory properties over a specific period of time.


Assuntos
Infecções Bacterianas , Óxido de Zinco , Animais , Camundongos , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio , Óxido de Zinco/farmacologia , Anti-Inflamatórios , Antibacterianos/farmacologia
18.
Br J Sports Med ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925888

RESUMO

OBJECTIVES: This study explored how race and socioeconomic status (SES) moderated the association between moderate-to-vigorous physical activity (MVPA) and depressive symptoms with compositional data. METHODS: Participants were 2803 US adults from the 2005-2006 cycle of the National Health and Nutrition Examination Survey. Accelerometers were used to measure MVPA, light-intensity physical activity (LPA) and sedentary behaviours (SB). Participants self-reported sleep duration and depressive symptoms. SES was derived by latent class analysis using household income level, education attainment and occupation. The association between the relative time of MVPA and depressive symptoms and the moderating effects of race and SES were investigated through compositional data analysis. Isotemporal substitution analysis was employed to estimate the association of time reallocation from other movement behaviours to MVPA with depressive symptoms. RESULTS: Increased time spent in MVPA relative to time spent in LPA, SB and sleep was inversely associated with depressive symptoms (OR (95% CI)=0.679 (0.538-0.855)). The relative time of MVPA significantly interacted with race and SES for depressive symptoms (P for interaction <0.05). Reallocating 10-30 min from sleep, SB or LPA to MVPA was associated with lower odds of depressive symptoms solely among non-Hispanic white individuals and those with higher SES. CONCLUSION: This study used compositional data to reveal a reverse association between MVPA and depressive symptoms among white individuals and those with higher SES. Our results provide evidence of how race and SES moderate the relationship between MVPA and depressive symptoms. Future research is needed to further explore these racial and socioeconomic differences.

19.
Int J Biometeorol ; 68(5): 909-925, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38363363

RESUMO

Intensive urban development has resulted in the degradation of the urban thermal environment in most regions. There is a growing consensus on the need to enhance urban thermal comfort through well-designed forms, especially in open spaces like urban canyons. To address this, our study focuses on Xi'an's commercial pedestrian streets, employing K-means clustering analysis to create 32 representative models based on actual scenes, capturing their textural characteristics. Simultaneously, 11 geometric indicators (2D/3D) were chosen to quantify the canyon's geometric form. We assessed the spatial and temporal distribution differences in the thermal environment across these models using Envi-met simulation. Finally, Spearman correlation analysis was employed to examine the correlation and significance of the two sets of indicators, culminating in formulating an ideal model. The findings reveal that (1) wind conditions are predominantly influenced by the canyon's geometric form, followed by solar radiation and temperature, with the lowest relative humidity change amplitude among the assessed thermal parameters. (2) Among the 11 geometric form indicators, 3D indicators correlate more significantly with thermal environment parameters than 2D indicators. Specifically, street orientation significantly impacts the thermal environment, Build-To-Line Rat holds greater significance than interface density, and both building shape coefficient and block surface ratio are significantly correlated with air temperature and wind speed, with a weaker correlation to solar radiation. (3) In the Xi'an region, courtyards oriented north-south demonstrate a more favorable trend in the thermal environment.


Assuntos
Cidades , Pedestres , Estações do Ano , Humanos , China , Temperatura , Modelos Teóricos , Ambiente Construído , Vento , Sensação Térmica , Umidade , Análise por Conglomerados
20.
Nano Lett ; 23(20): 9555-9562, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37787483

RESUMO

The effective design and construction of high-performance methanol oxidation reaction (MOR) electrocatalysts are significant for the development of direct methanol fuel cells. But the active sites of the MOR electrocatalysts are susceptible to being poisoned by CO, resulting in poor durability. Herein, we report an atomically dispersed CrOX species anchored on Pd metallene through bridging O atoms. This catalyst shows an outstanding MOR performance with 7 times higher mass activity and 100 mV lower CO electrooxidation potential than commercial Pd/C. The results of operando electrochemical Fourier transform infrared spectroscopy demonstrate the rapid removal of CO* on CrOX-Pd metallene. Theoretical calculations reveal that atomically dispersed CrOX can lower the adsorption energy of CO* on Pd sites and enhance that of OH* through the formation of a hydrogen bond, decreasing the formation energy of COOH*. This work provides a new strategy for improving MOR performance via atomically engineering oxide/metal interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA