Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 183(4): 982-995.e14, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991843

RESUMO

Initially, children were thought to be spared from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a month into the epidemic, a novel multisystem inflammatory syndrome in children (MIS-C) emerged. Herein, we report on the immune profiles of nine MIS-C cases. All MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with intact neutralization capability. Cytokine profiling identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1), and mucosal immune dysregulation (IL-17A, CCL20, and CCL28). Immunophenotyping of peripheral blood revealed reductions of non-classical monocytes, and subsets of NK and T lymphocytes, suggesting extravasation to affected tissues. Finally, profiling the autoantigen reactivity of MIS-C plasma revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal, and immune-cell antigens. All patients were treated with anti-IL-6R antibody and/or IVIG, which led to rapid disease resolution.


Assuntos
Inflamação/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adolescente , Anticorpos Antivirais/sangue , Autoanticorpos/sangue , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Quimiocina CCL3/metabolismo , Criança , Pré-Escolar , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Imunidade Humoral , Lactente , Recém-Nascido , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-18/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Masculino , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Adulto Jovem
3.
Gastroenterology ; 166(4): 667-679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37995866

RESUMO

BACKGROUND & AIMS: Chronic inflammation surrounding bile ducts contributes to the disease pathogenesis of most cholangiopathies. Poor efficacy of immunosuppression in these conditions suggests biliary-specific pathologic principles. Here we performed biliary niche specific functional interpretation of a causal mutation (CD100 K849T) of primary sclerosing cholangitis (PSC) to understand related pathogenic mechanisms. METHODS: Biopsy specimens of explanted livers and endoscopy-guided sampling were used to assess the CD100 expression by spatial transcriptomics, immune imaging, and high-dimensional flow cytometry. To model pathogenic cholangiocyte-immune cell interaction, splenocytes from mutation-specific mice were cocultured with cholangiocytes. Pathogenic pathways were pinpointed by RNA sequencing analysis of cocultured cells and cross-validated in patient materials. RESULTS: CD100 is mainly expressed by immune cells in the liver and shows a unique pattern around PSC bile ducts with RNA-level colocalization but poor detection at the protein level. This appears to be due to CD100 cleavage as soluble CD100 is increased. Immunophenotyping suggests biliary-infiltrating T cells as the major source of soluble CD100, which is further supported by reduced surface CD100 on T cells and increased metalloproteinases in cholangiocytes after coculturing. Pathogenic T cells that adhered to cholangiocytes up-regulated genes in the T-helper 17 cell differentiation pathway, and the CD100 mutation boosted this process. Consistently, T-helper 17 cells dominate biliary-resident CD4 T cells in patients. CONCLUSIONS: CD100 exerts its functional impact through cholangiocyte-immune cell cross talk and underscores an active, proinflammatory role of cholangiocytes that can be relevant to novel treatment approaches.


Assuntos
Sistema Biliar , Colangite Esclerosante , Colangite , Humanos , Animais , Camundongos , Fígado/patologia , Ductos Biliares/patologia , Sistema Biliar/patologia , Células Epiteliais/patologia , Diferenciação Celular , Colangite Esclerosante/patologia
4.
Hepatology ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39226402

RESUMO

Primary sclerosing cholangitis (PSC) is a chronic inflammatory progressive cholestatic liver disease. Genetic risk factors, the presence of autoantibodies, the strong clinical link with inflammatory bowel disease, and associations with other autoimmune disorders all suggest a pivotal role for the immune system in PSC pathogenesis. In this review, we provide a comprehensive overview of recent immunobiology insights in PSC. A particular emphasis is given to immunological concepts such as tissue residency and knowledge gained from novel technologies, including single-cell RNA sequencing and spatial transcriptomics. This review of the immunobiological landscape of PSC covers major immune cell types known to be enriched in PSC-diseased livers as well as recently described cell types whose biliary localization and contribution to PSC immunopathogenesis remain incompletely described. Finally, we emphasize the importance of time and space in relation to PSC heterogeneity as a key consideration for future studies interrogating the role of the immune system in PSC.

5.
J Infect Dis ; 230(2): e318-e326, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38421006

RESUMO

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe disease with increased morbidity and mortality among certain risk groups. The presence of autoantibodies against type I interferons (aIFN-Abs) is one mechanism that contributes to severe coronavirus disease 2019 (COVID-19). METHODS: This study aimed to investigate the presence of aIFN-Abs in relation to the soluble proteome, circulating immune cell numbers, and cellular phenotypes, as well as development of adaptive immunity. RESULTS: aIFN-Abs were more prevalent in critical compared to severe COVID-19 but largely absent in the other viral and bacterial infections studied here. The antibody and T-cell response to SARS-CoV-2 remained largely unaffected by the presence aIFN-Abs. Similarly, the inflammatory response in COVID-19 was comparable in individuals with and without aIFN-Abs. Instead, presence of aIFN-Abs had an impact on cellular immune system composition and skewing of cellular immune pathways. CONCLUSIONS: Our data suggest that aIFN-Abs do not significantly influence development of adaptive immunity but covary with alterations in immune cell numbers.


Assuntos
Autoanticorpos , COVID-19 , Interferon Tipo I , SARS-CoV-2 , Humanos , COVID-19/imunologia , Interferon Tipo I/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Imunidade Celular , Adulto , Idoso , Imunidade Adaptativa/imunologia , Linfócitos T/imunologia , Índice de Gravidade de Doença
6.
Cytometry A ; 99(5): 446-461, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33496367

RESUMO

Mass cytometry (CyTOF) represents one of the most powerful tools in immune phenotyping, allowing high throughput quantification of over 40 parameters at single-cell resolution. However, wide deployment of CyTOF-based immune phenotyping studies are limited by complex experimental workflows and the need for specialized CyTOF equipment and technical expertise. Furthermore, differences in cell isolation and enrichment protocols, antibody reagent preparation, sample staining, and data acquisition protocols can all introduce technical variation that can confound integrative analyses of large data-sets of samples processed across multiple labs. Here, we present a streamlined whole blood CyTOF workflow which addresses many of these sources of experimental variation and facilitates wider adoption of CyTOF immune monitoring across sites with limited technical expertise or sample-processing resources or equipment. Our workflow utilizes commercially available reagents including the Fluidigm MaxPar Direct Immune Profiling Assay (MDIPA), a dry tube 30-marker immunophenotyping panel, and SmartTube Proteomic Stabilizer, which allows for simple and reliable fixation and cryopreservation of whole blood samples. We validate a workflow that allows for streamlined staining of whole blood samples with minimal processing requirements or expertise at the site of sample collection, followed by shipment to a central CyTOF core facility for batched downstream processing and data acquisition. We apply this workflow to characterize 184 whole blood samples collected longitudinally from a cohort of 72 hospitalized COVID-19 patients and healthy controls, highlighting dynamic disease-associated changes in circulating immune cell frequency and phenotype.


Assuntos
COVID-19/diagnóstico , Separação Celular , Citometria de Fluxo , Imunofenotipagem , Leucócitos/imunologia , SARS-CoV-2/imunologia , Fluxo de Trabalho , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Leucócitos/metabolismo , Leucócitos/virologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Adulto Jovem
7.
JCI Insight ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388279

RESUMO

Natural Killer (NK) cells respond to diseased and allogeneic cells through NKG2A/HLA-E or Killer-cell Immunoglobulin-like receptor (KIR)/HLA-ABC interactions. Correlations between HLA/KIR disparities and kidney transplant pathology suggest an antibody-independent pathogenic role for NK cells in transplantation, but mechanisms remain unclear. Using CyTOF to characterize recipient peripheral NK cell phenotypes and function, we observed diverse NK cell subsets amongst participants that responded heterogeneously to allo-stimulators. NKG2A+/KIR+ NK cells responded more vigorously than other subsets, and this heightened response persisted post-kidney-transplant despite immunosuppression. In test and validation sets from two clinical trials, pre-transplant donor-induced release of cytotoxicity mediator, Ksp37, by NKG2A+ NK cells correlated with reduced long-term allograft function. Separate analyses showed Ksp37 gene expression in allograft biopsies lacking histological rejection correlated with death censored graft loss. Our findings support an antibody-independent role for NK cells in transplant injury and support further testing of pre-transplant, donor-reactive, NK cell-produced Ksp37 as a risk-assessing, transplantation biomarker.

8.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732256

RESUMO

Human Natural Killer (NK) cells are heterogeneous lymphocytes regulated by variegated arrays of germline-encoded activating and inhibitory receptors. They acquire the ability to detect polymorphic self-antigen via NKG2A/HLA-E or KIR/HLA-I ligand interactions through an education process. Correlations among HLA/KIR genes, kidney transplantation pathology and outcomes suggest that NK cells participate in allograft injury, but mechanisms linking NK HLA/KIR education to antibody-independent pathological functions remain unclear. We used CyTOF to characterize pre- and post-transplant peripheral blood NK cell phenotypes/functions before and after stimulation with allogeneic donor cells. Unsupervised clustering identified unique NK cell subpopulations present in varying proportions across patients, each of which responded heterogeneously to donor cells based on donor ligand expression patterns. Analyses of pre-transplant blood showed that educated, NKG2A/KIR-expressing NK cells responded greater than non-educated subsets to donor stimulators, and this heightened alloreactivity persisted > 6 months post-transplant despite immunosuppression. In distinct test and validation sets of patients participating in two clinical trials, pre-transplant donor-induced release of NK cell Ksp37, a cytotoxicity mediator, correlated with 2-year and 5-year eGFR. The findings explain previously reported associations between NK cell genotypes and transplant outcomes and suggest that pre-transplant NK cell analysis could function as a risk-assessment biomarker for transplant outcomes.

9.
Methods Mol Biol ; 2506: 269-280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771478

RESUMO

Mass cytometry allows for the use of highly multiplexed antibody panels due to the lack of spill-over between channels detected by mass spectrometry. An advantage over fluorescence cytometry is the relative lack of background, which provides excellent resolution for detection of phosphoproteins and quantification of cell signaling. We have applied mass cytometry to the analysis of whole blood staining after ex vivo stimulation with peanut allergen (Tordesillas et al., J Allergy Clin Immunol 138:1741-4.e9, 2016). This allows for high-dimensional analysis of basophil activation, and analysis of the entire composition of the blood compartment in response to allergen exposure. Here, we describe our optimized protocol for activation and staining of whole blood for mass cytometry analysis that is currently in use in multicenter clinical trials. The protocol can be easily adopted to analyze blood leukocytes in other diseases, including asthma.


Assuntos
Alérgenos , Asma , Basófilos , Citometria de Fluxo/métodos , Humanos , Coloração e Rotulagem
10.
Cell Rep ; 38(11): 110508, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247306

RESUMO

Concerns that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), may cause new-onset diabetes persist in an evolving research landscape, and precise risk assessment is hampered by, at times, conflicting evidence. Here, leveraging comprehensive single-cell analyses of in vitro SARS-CoV-2-infected human pancreatic islets, we demonstrate that productive infection is strictly dependent on the SARS-CoV-2 entry receptor ACE2 and targets practically all pancreatic cell types. Importantly, the infection remains highly circumscribed and largely non-cytopathic and, despite a high viral burden in infected subsets, promotes only modest cellular perturbations and inflammatory responses. Similar experimental outcomes are also observed after islet infection with endemic coronaviruses. Thus, the limits of pancreatic SARS-CoV-2 infection, even under in vitro conditions of enhanced virus exposure, challenge the proposition that in vivo targeting of ß cells by SARS-CoV-2 precipitates new-onset diabetes. Whether restricted pancreatic damage and immunological alterations accrued by COVID-19 increase cumulative diabetes risk, however, remains to be evaluated.


Assuntos
COVID-19 , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Pâncreas , SARS-CoV-2
11.
bioRxiv ; 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35043110

RESUMO

Though it has been 2 years since the start of the Coronavirus Disease 19 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, very little progress has been made to identify curative therapies to treat COVID-19 and other inflammatory diseases which remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and death to develop tailored immunotherapy strategies to halt disease progression. Here we assembled the Mount Sinai COVID-19 Biobank which was comprised of ~600 hospitalized patients followed longitudinally during the peak of the pandemic. Moderate disease and survival were associated with a stronger antigen (Ag) presentation and effector T cell signature, while severe disease and death were associated with an altered Ag presentation signature, increased numbers of circulating inflammatory, immature myeloid cells, and extrafollicular activated B cells associated with autoantibody formation. Strikingly, we found that in severe COVID-19 patients, lung tissue resident alveolar macrophages (AM) were not only severely depleted, but also had an altered Ag presentation signature, and were replaced by inflammatory monocytes and monocyte-derived macrophages (MoMΦ). Notably, the size of the AM pool correlated with recovery or death, while AM loss and functionality were restored in patients that recovered. These data therefore suggest that local and systemic myeloid cell dysregulation is a driver of COVID-19 severity and that modulation of AM numbers and functionality in the lung may be a viable therapeutic strategy for the treatment of critical lung inflammatory illnesses.

12.
Sci Transl Med ; 14(662): eabn5168, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103512

RESUMO

Although it has been more than 2 years since the start of the coronavirus disease 2019 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, therapies to treat COVID-19 and other inflammatory diseases remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and mortality to develop tailored immunotherapy strategies to halt disease progression. We assembled the Mount Sinai COVID-19 Biobank, which was composed of almost 600 hospitalized patients followed longitudinally through the peak of the pandemic in 2020. Moderate disease and survival were associated with a stronger antigen presentation and effector T cell signature. In contrast, severe disease and death were associated with an altered antigen presentation signature, increased numbers of inflammatory immature myeloid cells, and extrafollicular activated B cells that have been previously associated with autoantibody formation. In severely ill patients with COVID-19, lung tissue-resident alveolar macrophages not only were drastically depleted but also had an altered antigen presentation signature, which coincided with an influx of inflammatory monocytes and monocyte-derived macrophages. In addition, we found that the size of the alveolar macrophage pool correlated with patient outcome and that alveolar macrophage numbers and functionality were restored to homeostasis in patients who recovered from COVID-19. These data suggest that local and systemic myeloid cell dysregulation are drivers of COVID-19 severity and modulation of alveolar macrophage numbers and activity in the lung may be a viable therapeutic strategy for the treatment of critical inflammatory lung diseases.


Assuntos
COVID-19 , Macrófagos Alveolares , Humanos , Pulmão , Macrófagos , Monócitos
13.
Cancer Cell ; 40(9): 1027-1043.e9, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099881

RESUMO

Programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1)-blockade immunotherapies have limited efficacy in the treatment of bladder cancer. Here, we show that NKG2A associates with improved survival and responsiveness to PD-L1 blockade immunotherapy in bladder tumors that have high abundance of CD8+ T cells. In bladder tumors, NKG2A is acquired on CD8+ T cells later than PD-1 as well as other well-established immune checkpoints. NKG2A+ PD-1+ CD8+ T cells diverge from classically defined exhausted T cells through their ability to react to human leukocyte antigen (HLA) class I-deficient tumors using T cell receptor (TCR)-independent innate-like mechanisms. HLA-ABC expression by bladder tumors is progressively diminished as disease progresses, framing the importance of targeting TCR-independent anti-tumor functions. Notably, NKG2A+ CD8+ T cells are inhibited when HLA-E is expressed by tumors and partly restored upon NKG2A blockade in an HLA-E-dependent manner. Overall, our study provides a framework for subsequent clinical trials combining NKG2A blockade with other T cell-targeted immunotherapies, where tumors express higher levels of HLA-E.


Assuntos
Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias da Bexiga Urinária , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe I , Humanos , Receptor de Morte Celular Programada 1 , Neoplasias da Bexiga Urinária/terapia , Antígenos HLA-E
14.
medRxiv ; 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32607524

RESUMO

Mass cytometry (CyTOF) represents one of the most powerful tools in immune phenotyping, allowing high throughput quantification of over 40 single parameters at single-cell resolution. However, wide deployment of CyTOF-based immune phenotyping studies are limited by complex experimental workflows and the need for specialized CyTOF equipment and technical expertise. Furthermore, differences in cell isolation and enrichment protocols, antibody reagent preparation, sample staining and data acquisition protocols can all introduce technical variation that can potentially confound integrative analyses of large data-sets of samples processed across multiple labs. Here, we present a streamlined whole blood CyTOF workflow which addresses many of these sources of experimental variation and facilitates wider adoption of CyTOF immune monitoring across sites with limited technical expertise or sample-processing resources or equipment. Our workflow utilizes commercially available reagents including the Fluidigm MaxPar Direct Immune Profiling Assay (MDIPA), a dry tube 30-marker immunophenotyping panel, and SmartTube Proteomic Stabilizer, which allows for simple and reliable fixation and cryopreservation of whole blood samples. We validate a workflow that allows for streamlined staining of whole blood samples with minimal processing requirements or expertise at the site of sample collection, followed by shipment to a central CyTOF core facility for batched downstream processing and data acquisition. We further demonstrate the application of this workflow to characterize immune responses in a cohort of hospitalized COVID-19 patients, highlighting key disease-associated changes in immune cell frequency and phenotype.

15.
medRxiv ; 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32676612

RESUMO

Initially, the global outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spared children from severe disease. However, after the initial wave of infections, clusters of a novel hyperinflammatory disease have been reported in regions with ongoing SARS-CoV-2 epidemics. While the characteristic clinical features are becoming clear, the pathophysiology remains unknown. Herein, we report on the immune profiles of eight Multisystem Inflammatory Syndrome in Children (MIS-C) cases. We document that all MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with normal isotype-switching and neutralization capability. We further profiled the secreted immune response by high-dimensional cytokine assays, which identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1) and mucosal immune dysregulation (IL-17A, CCL20, CCL28). Mass cytometry immunophenotyping of peripheral blood revealed reductions of mDC1 and non-classical monocytes, as well as both NK- and T- lymphocytes, suggesting extravasation to affected tissues. Markers of activated myeloid function were also evident, including upregulation of ICAM1 and FcγR1 in neutrophil and non-classical monocytes, well-documented markers in autoinflammation and autoimmunity that indicate enhanced antigen presentation and Fc-mediated responses. Finally, to assess the role for autoimmunity secondary to infection, we profiled the auto-antigen reactivity of MIS-C plasma, which revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal and immune-cell antigens. All patients were treated with anti-IL6R antibody or IVIG, which led to rapid disease resolution tracking with normalization of inflammatory markers.

17.
Curr Protoc Cytom ; 85(1): e39, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29927100

RESUMO

Since its commercialization in the late 1980's, confocal laser scanning microscopy (CLSM) has since become one of the most prevalent fluorescence microscopy techniques for three-dimensional structural studies of biological cells and tissues. The flexibility of the approach has enabled its application in a diverse array of studies, from the fast imaging of dynamic processes in living cells, to meticulous morphological analyses of tissues, and co-localization of protein expression patterns. In this chapter, we introduce the principles of confocal microscopy and discuss how the approach has become a mainstay in the biological sciences. We describe the components of a CLSM system and assess how modern implementations of the approach have further expanded the use of the technique. Finally, we briefly outline some practical considerations to take into account when acquiring data using a CLSM system. © 2018 by John Wiley & Sons, Inc.


Assuntos
Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , História do Século XX , História do Século XXI , Microscopia Confocal/história , Microscopia Confocal/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA