Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nucleic Acids Res ; 48(D1): D265-D268, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31777944

RESUMO

As NLM's Conserved Domain Database (CDD) enters its 20th year of operations as a publicly available resource, CDD curation staff continues to develop hierarchical classifications of widely distributed protein domain families, and to record conserved sites associated with molecular function, so that they can be mapped onto user queries in support of hypothesis-driven biomolecular research. CDD offers both an archive of pre-computed domain annotations as well as live search services for both single protein or nucleotide queries and larger sets of protein query sequences. CDD staff has continued to characterize protein families via conserved domain architectures and has built up a significant corpus of curated domain architectures in support of naming bacterial proteins in RefSeq. These architecture definitions are available via SPARCLE, the Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Assuntos
Bases de Dados de Proteínas , Domínios Proteicos , Sequência de Aminoácidos , Sequência Conservada
2.
Bioinformatics ; 36(1): 131-135, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31218344

RESUMO

MOTIVATION: Build a web-based 3D molecular structure viewer focusing on interactive structural analysis. RESULTS: iCn3D (I-see-in-3D) can simultaneously show 3D structure, 2D molecular contacts and 1D protein and nucleotide sequences through an integrated sequence/annotation browser. Pre-defined and arbitrary molecular features can be selected in any of the 1D/2D/3D windows as sets of residues and these selections are synchronized dynamically in all displays. Biological annotations such as protein domains, single nucleotide variations, etc. can be shown as tracks in the 1D sequence/annotation browser. These customized displays can be shared with colleagues or publishers via a simple URL. iCn3D can display structure-structure alignments obtained from NCBI's VAST+ service. It can also display the alignment of a sequence with a structure as identified by BLAST, and thus relate 3D structure to a large fraction of all known proteins. iCn3D can also display electron density maps or electron microscopy (EM) density maps, and export files for 3D printing. The following example URL exemplifies some of the 1D/2D/3D representations: https://www.ncbi.nlm.nih.gov/Structure/icn3d/full.html?mmdbid=1TUP&showanno=1&show2d=1&showsets=1. AVAILABILITY AND IMPLEMENTATION: iCn3D is freely available to the public. Its source code is available at https://github.com/ncbi/icn3d. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequência de Bases , Biologia Computacional , Internet , Modelos Moleculares , Proteínas , Software , Biologia Computacional/métodos , Bases de Dados Genéticas , Conformação Molecular , Proteínas/química
3.
Nucleic Acids Res ; 45(D1): D200-D203, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899674

RESUMO

NCBI's Conserved Domain Database (CDD) aims at annotating biomolecular sequences with the location of evolutionarily conserved protein domain footprints, and functional sites inferred from such footprints. An archive of pre-computed domain annotation is maintained for proteins tracked by NCBI's Entrez database, and live search services are offered as well. CDD curation staff supplements a comprehensive collection of protein domain and protein family models, which have been imported from external providers, with representations of selected domain families that are curated in-house and organized into hierarchical classifications of functionally distinct families and sub-families. CDD also supports comparative analyses of protein families via conserved domain architectures, and a recent curation effort focuses on providing functional characterizations of distinct subfamily architectures using SPARCLE: Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas , Disseminação de Informação , Internet , Proteínas/química , Proteínas/classificação , Proteínas/genética
4.
Nucleic Acids Res ; 43(Database issue): D222-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25414356

RESUMO

NCBI's CDD, the Conserved Domain Database, enters its 15(th) year as a public resource for the annotation of proteins with the location of conserved domain footprints. Going forward, we strive to improve the coverage and consistency of domain annotation provided by CDD. We maintain a live search system as well as an archive of pre-computed domain annotation for sequences tracked in NCBI's Entrez protein database, which can be retrieved for single sequences or in bulk. We also maintain import procedures so that CDD contains domain models and domain definitions provided by several collections available in the public domain, as well as those produced by an in-house curation effort. The curation effort aims at increasing coverage and providing finer-grained classifications of common protein domains, for which a wealth of functional and structural data has become available. CDD curation generates alignment models of representative sequence fragments, which are in agreement with domain boundaries as observed in protein 3D structure, and which model the structurally conserved cores of domain families as well as annotate conserved features. CDD can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Curadoria de Dados
5.
Nucleic Acids Res ; 42(Database issue): D297-303, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24319143

RESUMO

The computational detection of similarities between protein 3D structures has become an indispensable tool for the detection of homologous relationships, the classification of protein families and functional inference. Consequently, numerous algorithms have been developed that facilitate structure comparison, including rapid searches against a steadily growing collection of protein structures. To this end, NCBI's Molecular Modeling Database (MMDB), which is based on the Protein Data Bank (PDB), maintains a comprehensive and up-to-date archive of protein structure similarities computed with the Vector Alignment Search Tool (VAST). These similarities have been recorded on the level of single proteins and protein domains, comprising in excess of 1.5 billion pairwise alignments. Here we present VAST+, an extension to the existing VAST service, which summarizes and presents structural similarity on the level of biological assemblies or macromolecular complexes. VAST+ simplifies structure neighboring results and shows, for macromolecular complexes tracked in MMDB, lists of similar complexes ranked by the extent of similarity. VAST+ replaces the previous VAST service as the default presentation of structure neighboring data in NCBI's Entrez query and retrieval system. MMDB and VAST+ can be accessed via http://www.ncbi.nlm.nih.gov/Structure.


Assuntos
Bases de Dados de Proteínas , Homologia Estrutural de Proteína , Gráficos por Computador , Internet , Substâncias Macromoleculares/química , Modelos Moleculares , Software
6.
Nucleic Acids Res ; 41(Database issue): D348-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23197659

RESUMO

CDD, the Conserved Domain Database, is part of NCBI's Entrez query and retrieval system and is also accessible via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. CDD provides annotation of protein sequences with the location of conserved domain footprints and functional sites inferred from these footprints. Pre-computed annotation is available via Entrez, and interactive search services accept single protein or nucleotide queries, as well as batch submissions of protein query sequences, utilizing RPS-BLAST to rapidly identify putative matches. CDD incorporates several protein domain and full-length protein model collections, and maintains an active curation effort that aims at providing fine grained classifications for major and well-characterized protein domain families, as supported by available protein three-dimensional (3D) structure and the published literature. To this date, the majority of protein 3D structures are represented by models tracked by CDD, and CDD curators are characterizing novel families that emerge from protein structure determination efforts.


Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Sequência Conservada , Internet , Modelos Moleculares , Anotação de Sequência Molecular , Proteínas/química , Proteínas/classificação , Proteínas/genética , Análise de Sequência de Proteína
7.
Nucleic Acids Res ; 40(Database issue): D461-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22135289

RESUMO

Close to 60% of protein sequences tracked in comprehensive databases can be mapped to a known three-dimensional (3D) structure by standard sequence similarity searches. Potentially, a great deal can be learned about proteins or protein families of interest from considering 3D structure, and to this day 3D structure data may remain an underutilized resource. Here we present enhancements in the Molecular Modeling Database (MMDB) and its data presentation, specifically pertaining to biologically relevant complexes and molecular interactions. MMDB is tightly integrated with NCBI's Entrez search and retrieval system, and mirrors the contents of the Protein Data Bank. It links protein 3D structure data with sequence data, sequence classification resources and PubChem, a repository of small-molecule chemical structures and their biological activities, facilitating access to 3D structure data not only for structural biologists, but also for molecular biologists and chemists. MMDB provides a complete set of detailed and pre-computed structural alignments obtained with the VAST algorithm, and provides visualization tools for 3D structure and structure/sequence alignment via the molecular graphics viewer Cn3D. MMDB can be accessed at http://www.ncbi.nlm.nih.gov/structure.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Análise de Sequência de Proteína
8.
Nucleic Acids Res ; 39(Database issue): D225-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21109532

RESUMO

NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Sequência Conservada , Modelos Biológicos , Proteínas/classificação , Análise de Sequência de Proteína
9.
Nucleic Acids Res ; 38(Database issue): D492-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854944

RESUMO

The NCBI BioSystems database, found at http://www.ncbi.nlm.nih.gov/biosystems/, centralizes and cross-links existing biological systems databases, increasing their utility and target audience by integrating their pathways and systems into NCBI resources. This integration allows users of NCBI's Entrez databases to quickly categorize proteins, genes and small molecules by metabolic pathway, disease state or other BioSystem type, without requiring time-consuming inference of biological relationships from the literature or multiple experimental datasets.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Biologia de Sistemas , Animais , Membrana Celular/metabolismo , Biologia Computacional/tendências , Bases de Dados de Proteínas , Genes , Genômica , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , National Library of Medicine (U.S.) , Software , Estados Unidos
10.
Nucleic Acids Res ; 37(Database issue): D205-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18984618

RESUMO

NCBI's Conserved Domain Database (CDD) is a collection of multiple sequence alignments and derived database search models, which represent protein domains conserved in molecular evolution. The collection can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, and is also part of NCBI's Entrez query and retrieval system, cross-linked to numerous other resources. CDD provides annotation of domain footprints and conserved functional sites on protein sequences. Precalculated domain annotation can be retrieved for protein sequences tracked in NCBI's Entrez system, and CDD's collection of models can be queried with novel protein sequences via the CD-Search service at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. Starting with the latest version of CDD, v2.14, information from redundant and homologous domain models is summarized at a superfamily level, and domain annotation on proteins is flagged as either 'specific' (identifying molecular function with high confidence) or as 'non-specific' (identifying superfamily membership only).


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Sequência Conservada , Proteínas/classificação , Alinhamento de Sequência , Análise de Sequência de Proteína
11.
J Med Libr Assoc ; 94(3): 286-98, E152-5, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16888662

RESUMO

BACKGROUND: The information landscape in biological and medical research has grown far beyond literature to include a wide variety of databases generated by research fields such as molecular biology and genomics. The traditional role of libraries to collect, organize, and provide access to information can expand naturally to encompass these new data domains. METHODS: This paper discusses the current and potential role of libraries in bioinformatics using empirical evidence and experience from eleven years of work in user services at the National Center for Biotechnology Information. FINDINGS: Medical and science libraries over the last decade have begun to establish educational and support programs to address the challenges users face in the effective and efficient use of a plethora of molecular biology databases and retrieval and analysis tools. As more libraries begin to establish a role in this area, the issues they face include assessment of user needs and skills, identification of existing services, development of plans for new services, recruitment and training of specialized staff, and establishment of collaborations with bioinformatics centers at their institutions. CONCLUSIONS: Increasing library involvement in bioinformatics can help address information needs of a broad range of students, researchers, and clinicians and ultimately help realize the power of bioinformatics resources in making new biological discoveries.


Assuntos
Biologia Computacional/educação , Bases de Dados como Assunto/tendências , Biblioteconomia/educação , Serviços de Biblioteca/tendências , Biologia Computacional/tendências , Bases de Dados como Assunto/estatística & dados numéricos , Armazenamento e Recuperação da Informação/estatística & dados numéricos , Armazenamento e Recuperação da Informação/tendências , Capacitação em Serviço , Relações Interinstitucionais , Bibliotecas Médicas , Avaliação das Necessidades , Recursos Humanos
12.
J Med Libr Assoc ; 94(3): 299-305, E156-87, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16888663

RESUMO

OBJECTIVES: This study was conducted to gauge the availability of bioinformatics end-user support services at US universities and to identify the providers of those services. The study primarily focused on the availability of short-term workshops that introduce users to molecular biology databases and analysis software. METHODS: Websites of selected US universities were reviewed to determine if bioinformatics educational workshops were offered, and, if so, what organizational units in the universities provided them. RESULTS: Of 239 reviewed universities, 72 (30%) offered bioinformatics educational workshops. These workshops were located at libraries (N = 15), bioinformatics centers (N = 38), or other facilities (N = 35). No such training was noted on the sites of 167 universities (70%). Of the 115 bioinformatics centers identified, two-thirds did not offer workshops. CONCLUSIONS: This analysis of university Websites indicates that a gap may exist in the availability of workshops and related training to assist researchers in the use of bioinformatics resources, representing a potential opportunity for libraries and other facilities to provide training and assistance for this growing user group.


Assuntos
Biologia Computacional/educação , Educação Continuada/estatística & dados numéricos , Capacitação em Serviço/estatística & dados numéricos , Internet , Bibliotecas , Estados Unidos , Universidades
13.
J Med Libr Assoc ; 94(3): 306, E188-91, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16888664

RESUMO

OBJECTIVES: The paper gives examples of the bioinformatics services provided in a variety of different libraries by librarians with a broad range of educational background and training. METHODS: Two investigators sent an email inquiry to attendees of the "National Center for Biotechnology Information's (NCBI) Introduction to Molecular Biology Information Resources" or "NCBI Advanced Workshop for Bioinformatics Information Specialists (NAWBIS)" courses. The thirty-five-item questionnaire addressed areas such as educational background, library setting, types and numbers of users served, and bioinformatics training and support services provided. Answers were compiled into program vignettes. DISCUSSION: The bioinformatics support services addressed in the paper are based in libraries with academic and clinical settings. Services have been established through different means: in collaboration with biology faculty as part of formal courses, through teaching workshops in the library, through one-on-one consultations, and by other methods. Librarians with backgrounds from art history to doctoral degrees in genetics have worked to establish these programs. CONCLUSION: Successful bioinformatics support programs can be established in libraries in a variety of different settings and by staff with a variety of different backgrounds and approaches.


Assuntos
Biologia Computacional/educação , Educação Continuada/métodos , Capacitação em Serviço/métodos , Bibliotecas , Serviços de Biblioteca , Serviços de Biblioteca/tendências , Desenvolvimento de Programas , Inquéritos e Questionários , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA