Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 116(2): 397-415, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33756056

RESUMO

Endolysin enzymes from bacteriophage cause bacterial lysis by degrading the peptidoglycan cell wall. The streptococcal C1 phage endolysin PlyC, is the most potent endolysin described to date and can rapidly lyse group A, C, and E streptococci. PlyC is known to bind the Group A streptococcal cell wall, but the specific molecular target or the binding site within PlyC remain uncharacterized. Here we report for the first time, that the polyrhamnose backbone of the Group A streptococcal cell wall is the binding target of PlyC. We have also characterized the putative rhamnose binding groove of PlyC and found four key residues that were critical to either the folding or the cell wall binding action of PlyC. Based on our results, we suggest that the interaction between PlyC and the cell wall may not be a high-affinity interaction as previously proposed, but rather a high avidity one, allowing for PlyC's remarkable lytic activity. Resistance to our current antibiotics is reaching crisis levels and there is an urgent need to develop the antibacterial agents with new modes of action. A detailed understanding of this potent endolysin may facilitate future developments of PlyC as a tool against the rise of antibiotic resistance.


Assuntos
Bacteriófagos/metabolismo , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Ramnose/metabolismo , Streptococcus pyogenes/virologia , Bacteriófagos/genética , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Endopeptidases/genética , Simulação de Acoplamento Molecular , Ligação Proteica/fisiologia , Streptococcus pyogenes/metabolismo
2.
J Am Chem Soc ; 139(11): 4157-4167, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28234007

RESUMO

Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems.


Assuntos
Estreptavidina/química , Sítios de Ligação , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
3.
J Org Chem ; 82(24): 12992-13002, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29148768

RESUMO

The development of effective protecting group chemistry is an important driving force behind the progress in the synthesis of complex oligosaccharides. Automated solid-phase synthesis is an attractive technique for the rapid assembly of oligosaccharides, built up of repetitive elements. The fact that (harsh) reagents are used in excess in multiple reaction cycles makes this technique extra demanding on the protecting groups used. Here, the synthesis of a set of oligorhamnan fragments is reported using the cyanopivaloyl (PivCN) ester to ensure effective neighboring group participation during the glycosylation events. The PivCN group combines the favorable characteristics of the parent pivaloyl (Piv) ester, stability, minimal migratory aptitude, minimal orthoester formation, while it can be cleaved under mild conditions. We show that the remote CN group in the PivCN renders the PivCN carbonyl more electropositive and thus susceptible to nucleophilic cleavage. This feature is built upon in the automated solid-phase assembly of the oligorhamnan fragments. Where the use of a Piv-protected building block failed because of incomplete cleavage, PivCN-protected synthons performed well and allowed the generation of oligorhamnans, up to 16 monosaccharides in length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA