Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(15): 4086-91, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035943

RESUMO

Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg N⋅ha(-1)⋅y(-1), we found a unimodal relationship; richness increased at low deposition levels and decreased above 8.7 and 13.4 kg N⋅ha(-1)⋅y(-1) in open and closed-canopy vegetation, respectively. N deposition exceeded critical loads for loss of plant species richness in 24% of 15,136 sites examined nationwide. There were negative relationships between species richness and N deposition in 36% of 44 community gradients. Vulnerability to N deposition was consistently higher in more acidic soils whereas the moderating roles of temperature and precipitation varied across scales. We demonstrate here that negative relationships between N deposition and species richness are common, albeit not universal, and that fine-scale processes can moderate vegetation responses to N deposition. Our results highlight the importance of contingent factors when estimating ecosystem vulnerability to N deposition and suggest that N deposition is affecting species richness in forested and nonforested systems across much of the continental United States.


Assuntos
Atmosfera , Biodiversidade , Nitrogênio/análise , Plantas/classificação , Estados Unidos
2.
PLoS One ; 17(6): e0269801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696414

RESUMO

The DeLong Mountain Transportation System (DMTS) haul road links the Red Dog Mine-one of the world's largest zinc mines-with a shipping port on the Chukchi Sea in northwest Alaska, USA. The road traverses 32 km of National Park Service (NPS) lands managed by Cape Krusenstern National Monument (CAKR). Fugitive dusts from ore concentrate transport and mining operations have dispersed zinc (Zn), lead (Pb), cadmium (Cd), and metal sulfides onto NPS lands since the mine began operating in 1989. This study assessed the effects of metal-enriched road dusts on the diversity and community structure of lichens, bryophytes, and vascular plants in dwarf-shrub tundra within CAKR. In a Bayesian posterior predictions model, lichen species richness (LSR) was highly correlated to distance from the haul road and was distributed on the landscape consistently with the spatial patterns of Zn, Pb and Cd patterns published earlier in this journal. The mean modeled LSR of the 3000-4000 m distance class was 41.3, and LSR decreased progressively down to 9.4 species in the 0-50 m class. An ordination of 93 lichen species by 91 plots revealed strong community patterns based on distance from the haul road. The major community gradient was highly correlated (r = 0.99) with LSR and negatively correlated with Cd, Pb and Zn (-0.79 < r < -0.74). Ordinations of bryophyte classes showed less response than lichens to distance from the road and heavy metals values, and vascular plant ordination showed less still. Measures of bryophyte health such as the midrib blackening and frond width of Hylocomium splendens were positively correlated with distance from the haul road and negatively correlated with this same suite of elements. A total area of approximately 55 km2 showed moderate to strong impacts on lichens from fugitive dusts. This is equivalent to an area of almost 1 km on both sides of the haul road running 32 km through CAKR.


Assuntos
Líquens , Metais Pesados , Poluentes do Solo , Alaska , Teorema de Bayes , Cádmio/análise , Poeira/análise , Monitoramento Ambiental , Chumbo , Metais Pesados/análise , Parques Recreativos , Poluentes do Solo/análise , Tundra , Zinco/análise
3.
Environ Sci Technol ; 45(24): 10354-61, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22087860

RESUMO

A wide range of semivolatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, whereas PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log K(OA) values compared to the other media. Lichen accumulated more SOCs with log K(OA) > 10 relative to needles and showed a greater accumulation of particle-phase PAHs.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental/métodos , Líquens/química , Folhas de Planta/química , Neve/química , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/instrumentação , Traqueófitas/química
4.
Environ Pollut ; 291: 118187, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34563846

RESUMO

Critical loads are thresholds of atmospheric deposition below which harmful ecological effects do not occur. Because lichens are sensitive to atmospheric deposition, lichen-based critical loads can foreshadow changes of other forest processes. Here, we derive critical loads of nitrogen (N) and sulfur (S) deposition for continental US and coastal Alaskan forests, based on nationally consistent lichen community surveys at 8855 sites. Across the eastern and western US ranges of 459 lichen species, each species' realized optimum was the N or S atmospheric deposition value at which it most frequently occurred. The mean of optima for all species at a site, weighted by their abundances, was defined as a community "airscore" indicative of species' collective responses to atmospheric deposition. To determine critical loads for adverse community compositional shifts, we then modeled changes in airscores as a function of deposition, climate and forest habitat predictors in nonparametric multiplicative regression. Critical loads, indicative of initial shifts from pollution-sensitive toward pollution-tolerant species, occurred at 1.5 kg N ha-1 y-1 and 2.7 kg S ha-1 y-1. Importantly, these critical loads remain constant under any climate regime nationwide, suggesting both simplicity and nationwide applicability. Our models predict that preventing excess N deposition of just 0.2-2.0 kg ha-1 y-1 in the next century could offset the detrimental effects of predicted climate warming on lichen communities. Because excess deposition and climate warming both harm the most ecologically influential species, keeping conditions below critical loads would sustain both forest ecosystem functioning and climate resilience.


Assuntos
Líquens , Ecossistema , Florestas , Nitrogênio , Enxofre , Árvores
5.
Diversity (Basel) ; 11(6): 1-87, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34712100

RESUMO

Critical loads of atmospheric deposition help decision-makers identify levels of air pollution harmful to ecosystem components. But when critical loads are exceeded, how can the accompanying ecological risk be quantified? We use a 90% quantile regression to model relationships between nitrogen and sulfur deposition and epiphytic macrolichens, focusing on responses of concern to managers of US forests: Species richness and abundance and diversity of functional groups with integral ecological roles. Analyses utilized national-scale lichen survey data, sensitivity ratings, and modeled deposition and climate data. We propose 20, 50, and 80% declines in these responses as cut-offs for low, moderate, and high ecological risk from deposition. Critical loads (low risk cut-off) for total species richness, sensitive species richness, forage lichen abundance and cyanolichen abundance, respectively, were 3.5, 3.1, 1.9, and 1.3 kg N and 6.0, 2.5, 2.6, and 2.3 kg S ha-1 yr-1. High environmental risk (80% decline), excluding total species richness, occurred at 14.8, 10.4, and 6.6 kg N and 14.1, 13, and 11 kg S ha-1 yr-1. These risks were further characterized in relation to geography, species of conservation concern, number of species affected, recovery timeframes, climate, and effects on interdependent biota, nutrient cycling, and ecosystem services.

6.
Nat Plants ; 5(7): 697-705, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263243

RESUMO

Atmospheric nitrogen and sulfur pollution increased over much of the United States during the twentieth century from fossil fuel combustion and industrial agriculture. Despite recent declines, nitrogen and sulfur deposition continue to affect many plant communities in the United States, although which species are at risk remains uncertain. We used species composition data from >14,000 survey sites across the contiguous United States to evaluate the association between nitrogen and sulfur deposition and the probability of occurrence for 348 herbaceous species. We found that the probability of occurrence for 70% of species was negatively associated with nitrogen or sulfur deposition somewhere in the contiguous United States (56% for N, 51% for S). Of the species, 15% and 51% potentially decreased at all nitrogen and sulfur deposition rates, respectively, suggesting thresholds below the minimum deposition they receive. Although more species potentially increased than decreased with nitrogen deposition, increasers tended to be introduced and decreasers tended to be higher-value native species. More vulnerable species tended to be shorter with lower tissue nitrogen and magnesium. These relationships constitute predictive equations to estimate critical loads. These results demonstrate that many herbaceous species may be at risk from atmospheric deposition and can inform improvements to air quality policies in the United States and globally.


Assuntos
Nitrogênio/química , Plantas/química , Enxofre/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/metabolismo , Poluição do Ar , Monitoramento Ambiental , Cinética , Nitrogênio/metabolismo , Plantas/classificação , Plantas/metabolismo , Enxofre/metabolismo , Estados Unidos
7.
J Air Waste Manag Assoc ; 58(9): 1223-34, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18817115

RESUMO

Agriculture releases copious fertilizing pollutants to air sheds and waterways of the northwestern United States. To evaluate threats to natural resources and historic rock paintings in remote Hells Canyon, Oregon and Idaho, deposition of ammonia (NH3), nitrogen oxides (NOx), sulfur dioxide (SO2), and hydrogen sulfide (H2S) at five stations along 60 km of the Snake River valley floor were passively sampled from July 2002 through June 2003, and ozone data and particulate chemistry were obtained from the Interagency Monitoring of Protected Visual Environments (IMPROVE) station at Hells Canyon. NH3 concentrations were high; biweekly averages peaked at 5-19 ppb in spring and summer and the nutrient-laden Snake River is a likely source. Fine particulate ammonium nitrate (NH4NO3) averaged 2.6 microg/m3 during the 20% of worst visibility days with winter drainage of air masses from the Snake River Basin and possibly long distance transport from southern California. Other pollutants were within background ranges. NH3 is corrosive to clay-based pictographs; nitrogen deposition can alter natural biotic communities and terrestrial ecosystem processes at levels reported here.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Nitrogênio/análise , Agricultura , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental , Sulfeto de Hidrogênio/análise , Óxidos de Nitrogênio/análise , Oregon , Ozônio/análise , Compostos de Amônio Quaternário/análise
8.
Sci Total Environ ; 625: 909-919, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29996462

RESUMO

We provide updated spatial distribution and inventory data for on-road NH3 emissions for the continental United States (U.S.) On-road NH3 emissions were determined from on-road CO2 emissions data and empirical NH3:CO2 vehicle emissions ratios. Emissions of NH3 from on-road sources in urbanized regions are typically 0.1-1.3tkm-2yr-1 while NH3 emissions in agricultural regions generally range from 0.4-5.5tkm-2yr-1, with a few hotspots as high as 5.5-11.2tkm-2yr-1. Counties with higher vehicle NH3 emissions than from agriculture include 40% of the U.S. POPULATION: The amount of wet inorganic N deposition as NH4+ from the National Atmospheric Deposition Program (NADP) network ranged from 37 to 83% with a mean of 58.7%. Only 4% of the NADP sites across the U.S. had <45% of the N deposition as NH4+ based on data from 2014 to 2016, illustrating the near-universal elevated proportions of NH4+ in deposition across the U.S. Case studies of on-road NH3 emissions in relation to N deposition include four urban sites in Oregon and Washington where the average NH4-N:NO3-N ratio in bulk deposition was 2.3. At urban sites in the greater Los Angeles Basin, bulk deposition of NH4-N and NO3-N were equivalent, while NH4-N:NO3-N in throughfall under shrubs ranged from 0.6 to 1.7. The NH4-N:NO3-N ratio at 7-10 sites in the Lake Tahoe Basin averaged 1.4 and 1.6 in bulk deposition and throughfall, and deposition of NH4-N was strongly correlated with summertime NH3 concentrations. On-road emissions of NH3 should not be ignored as an important source of atmospheric NH3, as a major contributor to particulate air pollution, and as a driver of N deposition in urban and urban-affected regions.

9.
Environ Pollut ; 145(1): 203-18, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16777297

RESUMO

Human activity is changing air quality and climate in the US Pacific Northwest. In a first application of non-metric multidimensional scaling to a large-scale, framework dataset, we modeled lichen community response to air quality and climate gradients at 1416 forested 0.4 ha plots. Model development balanced polluted plots across elevation, forest type and precipitation ranges to isolate pollution response. Air and climate scores were fitted for remaining plots, classed by lichen bioeffects, and mapped. Projected 2040 temperatures would create climate zones with no current analogue. Worst air scores occurred in urban-industrial and agricultural valleys and represented 24% of the landscape. They were correlated with: absence of sensitive lichens, enhancement of nitrophilous lichens, mean wet deposition of ammonium >0.06 mg l(-1), lichen nitrogen and sulfur concentrations >0.6% and 0.07%, and SO(2) levels harmful to sensitive lichens. The model can detect changes in air quality and climate by scoring re-measurements.


Assuntos
Poluição do Ar , Clima , Líquens , Biodiversidade , Monitoramento Ambiental/métodos , Modelos Biológicos , Oregon , Temperatura , Árvores , Washington
10.
PLoS One ; 12(5): e0177936, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542369

RESUMO

Spatial patterns of Zn, Pb and Cd deposition in Cape Krusenstern National Monument (CAKR), Alaska, adjacent to the Red Dog Mine haul road, were characterized in 2001 and 2006 using Hylocomium moss tissue as a biomonitor. Elevated concentrations of Cd, Pb, and Zn in moss tissue decreased logarithmically away from the haul road and the marine port. The metals concentrations in the two years were compared using Bayesian posterior predictions on a new sampling grid to which both data sets were fit. Posterior predictions were simulated 200 times both on a coarse grid of 2,357 points and by distance-based strata including subsets of these points. Compared to 2001, Zn and Pb concentrations in 2006 were 31 to 54% lower in the 3 sampling strata closest to the haul road (0-100, 100-2000 and 2000-4000 m). Pb decreased by 40% in the stratum 4,000-5,000 m from the haul road. Cd decreased significantly by 38% immediately adjacent to the road (0-100m), had an 89% probability of a small decrease 100-2000 m from the road, and showed moderate probabilities (56-71%) for increase at greater distances. There was no significant change over time (with probabilities all ≤ 85%) for any of the 3 elements in more distant reference areas (40-60 km). As in 2001, elemental concentrations in 2006 were higher on the north side of the road. Reductions in deposition have followed a large investment in infrastructure to control fugitive dust escapement at the mine and port sites, operational controls, and road dust mitigation. Fugitive dust escapement, while much reduced, is still resulting in elevated concentrations of Zn, Pb and Cd out to 5,000 m from the haul road. Zn and Pb levels were slightly above arctic baseline values in southern CAKR reference areas.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Metais Pesados/análise , Mineração , Parques Recreativos , Análise Espacial , Alaska , Análise de Regressão
11.
Environ Pollut ; 158(7): 2412-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20447744

RESUMO

Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha(-1)y(-1) in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs.


Assuntos
Poluentes Atmosféricos/metabolismo , Líquens/metabolismo , Nitrogênio/metabolismo , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Geografia , Oregon , Estados Unidos , Washington
12.
Environ Sci Technol ; 44(12): 4512-8, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20465303

RESUMO

Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify their potential sources. Seasonal snowpack was measured to determine the current wintertime atmospheric PAH deposition; lichens were measured to determine the long-term, year around deposition; and the temporal PAH deposition trends were reconstructed using lake sediment cores dated using (210)Pb and (137)Cs. The fourteen remote lake catchments ranged from low-latitude catchments (36.6 degrees N) at high elevation (2900 masl) in Sequoia National Park, CA to high-latitude catchments (68.4 degrees N) at low elevation (427 masl) in the Alaskan Arctic. Over 75% of the catchments demonstrated statistically significant temporal trends in SigmaPAH sediment flux, depending on catchment proximity to source regions and topographic barriers. The SigmaPAH concentrations and fluxes in seasonal snowpack, lichens, and surficial sediment were 3.6 to 60,000 times greater in the Snyder Lake catchment of Glacier National Park than the other 13 lake catchments. The PAH ratios measured in snow, lichen, and sediment were used to identify a local aluminum smelter as a major source of PAHs to the Snyder Lake catchment. These results suggest that topographic barriers influence the atmospheric transport and deposition of PAHs in high-elevation ecosystems and that PAH sources to these national park ecosystems range from local point sources to diffuse regional and global sources.


Assuntos
Ecossistema , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , Água Doce/química , Sedimentos Geológicos/química , Camada de Gelo/química , Líquens/química , Neve/química , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA