Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(2): 415-27, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303534

RESUMO

Epithelial cells acquire functionally important shapes (e.g., squamous, cuboidal, columnar) during development. Here, we combine theory, quantitative imaging, and perturbations to analyze how tissue geometry, cell divisions, and mechanics interact to shape the presumptive enveloping layer (pre-EVL) on the zebrafish embryonic surface. We find that, under geometrical constraints, pre-EVL flattening is regulated by surface cell number changes following differentially oriented cell divisions. The division pattern is, in turn, determined by the cell shape distribution, which forms under geometrical constraints by cell-cell mechanical coupling. An integrated mathematical model of this shape-division feedback loop recapitulates empirical observations. Surprisingly, the model predicts that cell shape is robust to changes of tissue surface area, cell volume, and cell number, which we confirm in vivo. Further simulations and perturbations suggest the parameter linking cell shape and division orientation contributes to epithelial diversity. Together, our work identifies an evolvable design logic that enables robust cell-level regulation of tissue-level development.


Assuntos
Células Epiteliais/citologia , Modelos Biológicos , Morfogênese , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Contagem de Células , Divisão Celular , Forma Celular , Embrião não Mamífero/citologia
2.
Cell ; 153(3): 550-61, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622240

RESUMO

Sharply delineated domains of cell types arise in developing tissues under instruction of inductive signal (morphogen) gradients, which specify distinct cell fates at different signal levels. The translation of a morphogen gradient into discrete spatial domains relies on precise signal responses at stable cell positions. However, cells in developing tissues undergoing morphogenesis and proliferation often experience complex movements, which may affect their morphogen exposure, specification, and positioning. How is a clear pattern achieved with cells moving around? Using in toto imaging of the zebrafish neural tube, we analyzed specification patterns and movement trajectories of neural progenitors. We found that specified progenitors of different fates are spatially mixed following heterogeneous Sonic Hedgehog signaling responses. Cell sorting then rearranges them into sharply bordered domains. Ectopically induced motor neuron progenitors also robustly sort to correct locations. Our results reveal that cell sorting acts to correct imprecision of spatial patterning by noisy inductive signals.


Assuntos
Morfogênese , Células-Tronco Neurais/metabolismo , Tubo Neural/citologia , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Movimento Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Proteínas Hedgehog/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
Front Neuroinform ; 7: 35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24501592

RESUMO

In the last decade, level-set methods have been actively developed for applications in image registration, segmentation, tracking, and reconstruction. However, the development of a wide variety of level-set PDEs and their numerical discretization schemes, coupled with hybrid combinations of PDE terms, stopping criteria, and reinitialization strategies, has created a software logistics problem. In the absence of an integrative design, current toolkits support only specific types of level-set implementations which restrict future algorithm development since extensions require significant code duplication and effort. In the new NIH/NLM Insight Toolkit (ITK) v4 architecture, we implemented a level-set software design that is flexible to different numerical (continuous, discrete, and sparse) and grid representations (point, mesh, and image-based). Given that a generic PDE is a summation of different terms, we used a set of linked containers to which level-set terms can be added or deleted at any point in the evolution process. This container-based approach allows the user to explore and customize terms in the level-set equation at compile-time in a flexible manner. The framework is optimized so that repeated computations of common intensity functions (e.g., gradient and Hessians) across multiple terms is eliminated. The framework further enables the evolution of multiple level-sets for multi-object segmentation and processing of large datasets. For doing so, we restrict level-set domains to subsets of the image domain and use multithreading strategies to process groups of subdomains or level-set functions. Users can also select from a variety of reinitialization policies and stopping criteria. Finally, we developed a visualization framework that shows the evolution of a level-set in real-time to help guide algorithm development and parameter optimization. We demonstrate the power of our new framework using confocal microscopy images of cells in a developing zebrafish embryo.

4.
Artigo em Inglês | MEDLINE | ID: mdl-20426166

RESUMO

We consider the problem of segmenting 3D images that contain a dense collection of spatially correlated objects, such as fluorescent labeled cells in tissue. Our approach involves an initial modeling phase followed by a data-fitting segmentation phase. In the first phase, cell shape (membrane bound) is modeled implicitly using a parametric distribution of correlation function estimates. The nucleus is modeled for its shape as well as image intensity distribution inspired from the physics of its image formation. In the second phase, we solve the segmentation problem using a variational level-set strategy with coupled active contours to minimize a novel energy functional. We demonstrate the utility of our approach on multispectral fluorescence microscopy images.


Assuntos
Algoritmos , Núcleo Celular/ultraestrutura , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-19964083

RESUMO

We present a high performance variant of the popular geodesic active contours which are used for splitting cell clusters in microscopy images. Previously, we implemented a linear pipelined version that incorporates as many cues as possible into developing a suitable level-set speed function so that an evolving contour exactly segments a cell/nuclei blob. We use image gradients, distance maps, multiple channel information and a shape model to drive the evolution. We also developed a dedicated seeding strategy that uses the spatial coherency of the data to generate an over complete set of seeds along with a quality metric which is further used to sort out which seed should be used for a given cell. However, the computational performance of any level-set methodology is quite poor when applied to thousands of 3D data-sets each containing thousands of cells. Those data-sets are common in confocal microscopy. In this work, we explore methods to stream the algorithm in shared memory, multi-core environments. By partitioning the input and output using spatial data structures we insure the spatial coherency needed by our seeding algorithm as well as improve drastically the speed without memory overhead. Our results show speed-ups up to a factor of six.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Algoritmos , Núcleo Celular/metabolismo , Gráficos por Computador , Simulação por Computador , Computadores , Diagnóstico por Imagem/métodos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Software
6.
Anat Sci Educ ; 2(1): 24-33, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19217067

RESUMO

The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables dynamic scene compositing, real-time interaction combined with animation, correlation of 3D models with sectional images, quantification as well as 3D manipulation-independent labeling and knowledge-related meta labeling (with name, diameter, description, variants, and references). This novel exploration is incorporated into a 3D atlas of cerebral vasculature with arteries and veins along with the surrounding surface and sectional neuroanatomy derived from 3.0 Tesla scans. This exploration paradigm is useful in medical education, training, research, and clinical applications. It enables development of new generation systems for rapid and intelligent exploration of complicated digital body models in real time with dynamic scene compositing from highly parcellated 3D models, continuous navigation, and manipulation-independent labeling with multiple features.


Assuntos
Anatomia/métodos , Encéfalo/irrigação sanguínea , Simulação por Computador , Modelos Anatômicos , Modelos Cardiovasculares , Neuroanatomia/métodos , Artérias Cerebrais/anatomia & histologia , Veias Cerebrais/anatomia & histologia , Gráficos por Computador , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA